

Radionuclide (atomic number)	A ₁ (TBq)	A ₂ (TBq)	Activity concentration limit for exempt material (Bq/g)	Activity limit for an exempt consignment (Bq)
Germanium (32)				
Ge-68 (a)	5×10^{-1}	5×10^{-1}	1×10^1	1×10^5
Ge-69	1×10^0	1×10^0	1×10^1	1×10^6
Ge-71	4×10^1	4×10^1	1×10^4	1×10^8
Ge-77	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Hafnium (72)				
Hf-172 (a)	6×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Hf-175	3×10^0	3×10^0	1×10^2	1×10^6
Hf-181	2×10^0	5×10^{-1}	1×10^1	1×10^6
Hf-182	Unlimited	Unlimited	1×10^2	1×10^6
Mercury (80)				
Hg-194 (a)	1×10^0	1×10^0	1×10^1	1×10^6
Hg-195m (a)	3×10^0	7×10^{-1}	1×10^2	1×10^6
Hg-197	2×10^1	1×10^1	1×10^2	1×10^7
Hg-197m	1×10^1	4×10^{-1}	1×10^2	1×10^6
Hg-203	5×10^0	1×10^0	1×10^2	1×10^5
Holmium (67)				
Ho-166	4×10^{-1}	4×10^{-1}	1×10^3	1×10^5
Ho-166m	6×10^{-1}	5×10^{-1}	1×10^1	1×10^6
Iodine (53)				
I-123	6×10^0	3×10^0	1×10^2	1×10^7
I-124	1×10^0	1×10^0	1×10^1	1×10^6
I-125	2×10^1	3×10^0	1×10^3	1×10^6
I-126	2×10^0	1×10^0	1×10^2	1×10^6
I-129	Unlimited	Unlimited	1×10^2	1×10^5
I-131	3×10^0	7×10^{-1}	1×10^2	1×10^6
I-132	4×10^{-1}	4×10^{-1}	1×10^1	1×10^5
I-133	7×10^{-1}	6×10^{-1}	1×10^1	1×10^6
I-134	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
I-135 (a)	6×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Indium (49)				
In-111	3×10^0	3×10^0	1×10^2	1×10^6
In-113m	4×10^0	2×10^0	1×10^2	1×10^6
In-114m (a)	1×10^1	5×10^{-1}	1×10^2	1×10^6
In-115m	7×10^0	1×10^0	1×10^2	1×10^6
Iridium (77)				
Ir-189 (a)	1×10^1	1×10^1	1×10^2	1×10^7
Ir-190	7×10^{-1}	7×10^{-1}	1×10^1	1×10^6
Ir-192	1×10^0 (c)	6×10^{-1}	1×10^1	1×10^4
Ir-193m	4×10^1	4×10^0	1×10^4	1×10^7
Ir-194	3×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Potassium (19)				
K-40	9×10^{-1}	9×10^{-1}	1×10^2	1×10^6
K-42	2×10^{-1}	2×10^{-1}	1×10^2	1×10^6
K-43	7×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Krypton (36)				
Kr-79	4×10^0	2×10^0	1×10^3	1×10^5
Kr-81	4×10^1	4×10^1	1×10^4	1×10^7
Kr-85	1×10^1	1×10^1	1×10^5	1×10^4
Kr-85m	8×10^0	3×10^0	1×10^3	1×10^{10}
Kr-87	2×10^{-1}	2×10^{-1}	1×10^2	1×10^9
Lanthanum (57)				
La-137	3×10^1	6×10^0	1×10^3	1×10^7
La-140	4×10^{-1}	4×10^{-1}	1×10^1	1×10^5

Radionuclide (atomic number)	A ₁ (TBq)	A ₂ (TBq)	Activity concentration limit for exempt material (Bq/g)	Activity limit for an exempt consignment (Bq)
Lutetium (71)				
Lu-172	6×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Lu-173	8×10^0	8×10^0	1×10^2	1×10^7
Lu-174	9×10^0	9×10^0	1×10^2	1×10^7
Lu-174m	2×10^1	1×10^1	1×10^2	1×10^7
Lu-177	3×10^1	7×10^{-1}	1×10^3	1×10^7
Magnesium (12)				
Mg-28 (a)	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Manganese (25)				
Mn-52	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Mn-53	Unlimited	Unlimited	1×10^4	1×10^9
Mn-54	1×10^0	1×10^0	1×10^1	1×10^6
Mn-56	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Molybdenum (42)				
Mo-93	4×10^1	2×10^1	1×10^3	1×10^8
Mo-99 (a)	1×10^0	6×10^{-1}	1×10^2	1×10^6
Nitrogen (7)				
N-13	9×10^{-1}	6×10^{-1}	1×10^2	1×10^9
Sodium (11)				
Na-22	5×10^{-1}	5×10^{-1}	1×10^1	1×10^6
Na-24	2×10^{-1}	2×10^{-1}	1×10^1	1×10^5
Niobium (41)				
Nb-93m	4×10^1	3×10^1	1×10^4	1×10^7
Nb-94	7×10^{-1}	7×10^{-1}	1×10^1	1×10^6
Nb-95	1×10^0	1×10^0	1×10^1	1×10^6
Nb-97	9×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Neodymium (60)				
Nd-147	6×10^0	6×10^{-1}	1×10^2	1×10^6
Nd-149	6×10^{-1}	5×10^{-1}	1×10^2	1×10^6
Nickel (28)				
Ni-57	6×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Ni-59	Unlimited	Unlimited	1×10^4	1×10^8
Ni-63	4×10^1	3×10^1	1×10^5	1×10^8
Ni-65	4×10^{-1}	4×10^{-1}	1×10^1	1×10^6
Neptunium (93)				
Np-235	4×10^1	4×10^1	1×10^3	1×10^7
Np-236 (short-lived)	2×10^1	2×10^0	1×10^3	1×10^7
Np-236 (long-lived)	9×10^0	2×10^{-2}	1×10^2	1×10^5
Np-237	2×10^1	2×10^{-3}	1×10^0 (b)	1×10^3 (b)
Np-239	7×10^0	4×10^{-1}	1×10^2	1×10^7
Osmium (76)				
Os-185	1×10^0	1×10^0	1×10^1	1×10^6
Os-191	1×10^1	2×10^0	1×10^2	1×10^7
Os-191m	4×10^1	3×10^1	1×10^3	1×10^7
Os-193	2×10^0	6×10^{-1}	1×10^2	1×10^6
Os-194 (a)	3×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Phosphorus (15)				
P-32	5×10^{-1}	5×10^{-1}	1×10^3	1×10^5
P-33	4×10^1	1×10^0	1×10^5	1×10^8
Protactinium (91)				
Pa-230 (a)	2×10^0	7×10^{-2}	1×10^1	1×10^6
Pa-231	4×10^0	4×10^{-4}	1×10^0	1×10^3
Pa-233	5×10^0	7×10^{-1}	1×10^2	1×10^7

Radionuclide (atomic number)	A ₁ (TBq)	A ₂ (TBq)	Activity concentration limit for exempt material (Bq/g)	Activity limit for an exempt consignment (Bq)
Lead (82)				
Pb-201	1×10^0	1×10^0	1×10^1	1×10^6
Pb-202	4×10^1	2×10^1	1×10^3	1×10^6
Pb-203	4×10^0	3×10^0	1×10^2	1×10^6
Pb-205	Unlimited	Unlimited	1×10^4	1×10^7
Pb-210 (a)	1×10^0	5×10^{-2}	1×10^1 (b)	1×10^4 (b)
Pb-212 (a)	7×10^{-1}	2×10^{-1}	1×10^1 (b)	1×10^5 (b)
Palladium (46)				
Pd-103 (a)	4×10^1	4×10^1	1×10^3	1×10^8
Pd-107	Unlimited	Unlimited	1×10^5	1×10^8
Pd-109	2×10^0	5×10^{-1}	1×10^3	1×10^6
Promethium (61)				
Pm-143	3×10^0	3×10^0	1×10^2	1×10^6
Pm-144	7×10^{-1}	7×10^{-1}	1×10^1	1×10^6
Pm-145	3×10^1	1×10^1	1×10^3	1×10^7
Pm-147	4×10^1	2×10^0	1×10^4	1×10^7
Pm-148m (a)	8×10^{-1}	7×10^{-1}	1×10^1	1×10^6
Pm-149	2×10^0	6×10^{-1}	1×10^3	1×10^6
Pm-151	2×10^0	6×10^{-1}	1×10^2	1×10^6
Polonium (84)				
Po-210	4×10^1	2×10^{-2}	1×10^1	1×10^4
Praseodymium (59)				
Pr-142	4×10^{-1}	4×10^{-1}	1×10^2	1×10^5
Pr-143	3×10^0	6×10^{-1}	1×10^4	1×10^6
Platinum (78)				
Pt-188 (a)	1×10^0	8×10^{-1}	1×10^1	1×10^6
Pt-191	4×10^0	3×10^0	1×10^2	1×10^6
Pt-193	4×10^1	4×10^1	1×10^4	1×10^7
Pt-193m	4×10^1	5×10^{-1}	1×10^3	1×10^7
Pt-195m	1×10^1	5×10^{-1}	1×10^2	1×10^6
Pt-197	2×10^1	6×10^{-1}	1×10^3	1×10^6
Pt-197m	1×10^1	6×10^{-1}	1×10^2	1×10^6
Plutonium (94)				
Pu-236	3×10^1	3×10^{-3}	1×10^1	1×10^4
Pu-237	2×10^1	2×10^1	1×10^3	1×10^7
Pu-238	1×10^1	1×10^{-3}	1×10^0	1×10^4
Pu-239	1×10^1	1×10^{-3}	1×10^0	1×10^4
Pu-240	1×10^1	1×10^{-3}	1×10^0	1×10^3
Pu-241 (a)	4×10^1	6×10^{-2}	1×10^2	1×10^5
Pu-242	1×10^1	1×10^{-3}	1×10^0	1×10^4
Pu-244 (a)	4×10^{-1}	1×10^{-3}	1×10^0	1×10^4
Radium (88)				
Ra-223 (a)	4×10^{-1}	7×10^{-3}	1×10^2 (b)	1×10^5 (b)
Ra-224 (a)	4×10^{-1}	2×10^{-2}	1×10^1 (b)	1×10^5 (b)
Ra-225 (a)	2×10^{-1}	4×10^{-3}	1×10^2	1×10^5
Ra-226 (a)	2×10^{-1}	3×10^{-3}	1×10^1 (b)	1×10^4 (b)
Ra-228 (a)	6×10^{-1}	2×10^{-2}	1×10^1 (b)	1×10^5 (b)
Rubidium (37)				
Rb-81	2×10^0	8×10^{-1}	1×10^1	1×10^6
Rb-83 (a)	2×10^0	2×10^0	1×10^2	1×10^6
Rb-84	1×10^0	1×10^0	1×10^1	1×10^6
Rb-86	5×10^{-1}	5×10^{-1}	1×10^2	1×10^5
Rb-87	Unlimited	Unlimited	1×10^4	1×10^7
Rb (natural)	Unlimited	Unlimited	1×10^4	1×10^7

Radionuclide (atomic number)	A ₁ (TBq)	A ₂ (TBq)	Activity concentration limit for exempt material (Bq/g)	Activity limit for an exempt consignment (Bq)
Rhenium (75)				
Re-184	1×10^0	1×10^0	1×10^1	1×10^6
Re-184m	3×10^0	1×10^0	1×10^2	1×10^6
Re-186	2×10^0	6×10^{-1}	1×10^3	1×10^6
Re-187	Unlimited	Unlimited	1×10^6	1×10^9
Re-188	4×10^{-1}	4×10^{-1}	1×10^2	1×10^5
Re-189 (a)	3×10^0	6×10^{-1}	1×10^2	1×10^6
Re (natural)	Unlimited	Unlimited	1×10^6	1×10^9
Rhodium (45)				
Rh-99	2×10^0	2×10^0	1×10^1	1×10^6
Rh-101	4×10^0	3×10^0	1×10^2	1×10^7
Rh-102	5×10^{-1}	5×10^{-1}	1×10^1	1×10^6
Rh-102m	2×10^0	2×10^0	1×10^2	1×10^6
Rh-103m	4×10^1	4×10^1	1×10^4	1×10^8
Rh-105	1×10^1	8×10^{-1}	1×10^2	1×10^7
Radon (86)				
Rn-222 (a)	3×10^{-1}	4×10^{-3}	1×10^1 (b)	1×10^8 (b)
Ruthenium (44)				
Ru-97	5×10^0	5×10^0	1×10^2	1×10^7
Ru-103 (a)	2×10^0	2×10^0	1×10^2	1×10^6
Ru-105	1×10^0	6×10^{-1}	1×10^1	1×10^6
Ru-106 (a)	2×10^{-1}	2×10^{-1}	1×10^2 (b)	1×10^5 (b)
Sulphur (16)				
S-35	4×10^1	3×10^0	1×10^5	1×10^8
Antimony (51)				
Sb-122	4×10^{-1}	4×10^{-1}	1×10^2	1×10^4
Sb-124	6×10^{-1}	6×10^{-1}	1×10^1	1×10^6
Sb-125	2×10^0	1×10^0	1×10^2	1×10^6
Sb-126	4×10^{-1}	4×10^{-1}	1×10^1	1×10^5
Scandium (21)				
Sc-44	5×10^{-1}	5×10^{-1}	1×10^1	1×10^5
Sc-46	5×10^{-1}	5×10^{-1}	1×10^1	1×10^6
Sc-47	1×10^1	7×10^{-1}	1×10^2	1×10^6
Sc-48	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Selenium (34)				
Se-75	3×10^0	3×10^0	1×10^2	1×10^6
Se-79	4×10^1	2×10^0	1×10^4	1×10^7
Silicon (14)				
Si-31	6×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Si-32	4×10^1	5×10^{-1}	1×10^3	1×10^6
Samarium (62)				
Sm-145	1×10^1	1×10^1	1×10^2	1×10^7
Sm-147	Unlimited	Unlimited	1×10^1	1×10^4
Sm-151	4×10^1	1×10^1	1×10^4	1×10^8
Sm-153	9×10^0	6×10^{-1}	1×10^2	1×10^6
Tin (50)				
Sn-113 (a)	4×10^0	2×10^0	1×10^3	1×10^7
Sn-117m	7×10^0	4×10^{-1}	1×10^2	1×10^6
Sn-119m	4×10^1	3×10^1	1×10^3	1×10^7
Sn-121m (a)	4×10^1	9×10^{-1}	1×10^3	1×10^7
Sn-123	8×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Sn-125	4×10^{-1}	4×10^{-1}	1×10^2	1×10^5
Sn-126 (a)	6×10^{-1}	4×10^{-1}	1×10^1	1×10^5

Radionuclide (atomic number)	A ₁ (TBq)	A ₂ (TBq)	Activity concentration limit for exempt material (Bq/g)	Activity limit for an exempt consignment (Bq)
Strontium (38)				
Sr-82 (a)	2×10^{-1}	2×10^{-1}	1×10^1	1×10^5
Sr-83	1×10^0	1×10^0	1×10^1	1×10^6
Sr-85	2×10^0	2×10^0	1×10^2	1×10^6
Sr-85m	5×10^0	5×10^0	1×10^2	1×10^7
Sr-87m	3×10^0	3×10^0	1×10^2	1×10^6
Sr-89	6×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Sr-90 (a)	3×10^{-1}	3×10^{-1}	1×10^2 (b)	1×10^4 (b)
Sr-91 (a)	3×10^{-1}	3×10^{-1}	1×10^1	1×10^5
Sr-92 (a)	1×10^0	3×10^{-1}	1×10^1	1×10^6
Tritium (1)				
T(H-3)	4×10^1	4×10^1	1×10^6	1×10^9
Tantalum (73)				
Ta-178 (long-lived)	1×10^0	8×10^{-1}	1×10^1	1×10^6
Ta-179	3×10^1	3×10^1	1×10^3	1×10^7
Ta-182	9×10^{-1}	5×10^{-1}	1×10^1	1×10^4
Terbium (65)				
Tb-149	8×10^{-1}	8×10^{-1}	1×10^1	1×10^6
Tb-157	4×10^1	4×10^1	1×10^4	1×10^7
Tb-158	1×10^0	1×10^0	1×10^1	1×10^6
Tb-160	1×10^0	6×10^{-1}	1×10^1	1×10^6
Tb-161	3×10^1	7×10^{-1}	1×10^3	1×10^6
Technetium (43)				
Tc-95m (a)	2×10^0	2×10^0	1×10^1	1×10^6
Tc-96	4×10^{-1}	4×10^{-1}	1×10^1	1×10^6
Tc-96m (a)	4×10^{-1}	4×10^{-1}	1×10^3	1×10^7
Tc-97	Unlimited	Unlimited	1×10^3	1×10^8
Tc-97m	4×10^1	1×10^0	1×10^3	1×10^7
Tc-98	8×10^{-1}	7×10^{-1}	1×10^1	1×10^6
Tc-99	4×10^1	9×10^{-1}	1×10^4	1×10^7
Tc-99m	1×10^1	4×10^0	1×10^2	1×10^7
Tellurium (52)				
Te-121	2×10^0	2×10^0	1×10^1	1×10^6
Te-121m	5×10^0	3×10^0	1×10^2	1×10^6
Te-123m	8×10^0	1×10^0	1×10^2	1×10^7
Te-125m	2×10^1	9×10^{-1}	1×10^3	1×10^7
Te-127	2×10^1	7×10^{-1}	1×10^3	1×10^6
Te-127m (a)	2×10^1	5×10^{-1}	1×10^3	1×10^7
Te-129	7×10^{-1}	6×10^{-1}	1×10^2	1×10^6
Te-129m (a)	8×10^{-1}	4×10^{-1}	1×10^3	1×10^6
Te-131m (a)	7×10^{-1}	5×10^{-1}	1×10^1	1×10^6
Te-132 (a)	5×10^{-1}	4×10^{-1}	1×10^2	1×10^7
Thorium (90)				
Th-227	1×10^1	5×10^{-3}	1×10^1	1×10^4
Th-228 (a)	5×10^{-1}	1×10^{-3}	1×10^0 (b)	1×10^4 (b)
Th-229	5×10^0	5×10^{-4}	1×10^0 (b)	1×10^3 (b)
Th-230	1×10^1	1×10^{-3}	1×10^0	1×10^4
Th-231	4×10^1	2×10^{-2}	1×10^3	1×10^7
Th-232	Unlimited	Unlimited	1×10^1	1×10^4
Th-234 (a)	3×10^{-1}	3×10^{-1}	1×10^3 (b)	1×10^5 (b)
Th (natural)	Unlimited	Unlimited	1×10^0 (b)	1×10^3 (b)
Titanium (22)				
Ti-44 (a)	5×10^{-1}	4×10^{-1}	1×10^1	1×10^5

Radionuclide (atomic number)	A ₁ (TBq)	A ₂ (TBq)	Activity concentration limit for exempt material (Bq/g)	Activity limit for an exempt consignment (Bq)
Thallium (81)				
Tl-200	9×10^{-1}	9×10^{-1}	1×10^1	1×10^6
Tl-201	1×10^1	4×10^0	1×10^2	1×10^6
Tl-202	2×10^0	2×10^0	1×10^2	1×10^6
Tl-204	1×10^1	7×10^{-1}	1×10^4	1×10^4
Thulium (69)				
Tm-167	7×10^0	8×10^{-1}	1×10^2	1×10^6
Tm-170	3×10^0	6×10^{-1}	1×10^3	1×10^6
Tm-171	4×10^1	4×10^1	1×10^4	1×10^8
Uranium (92)				
U-230 (fast lung absorption) (a)(d)	4×10^1	1×10^{-1}	1×10^1 (b)	1×10^5 (b)
U-230 (medium lung absorption) (a)(e)	4×10^1	4×10^{-3}	1×10^1	1×10^4
U-230 (slow lung absorption) (a)(f)	3×10^1	3×10^{-3}	1×10^1	1×10^4
U-232 (fast lung absorption) (d)	4×10^1	1×10^{-2}	1×10^0 (b)	1×10^3 (b)
U-232 (medium lung absorption) (e)	4×10^1	7×10^{-3}	1×10^1	1×10^4
U-232 (slow lung absorption) (f)	1×10^1	1×10^{-3}	1×10^1	1×10^4
U-233 (fast lung absorption) (d)	4×10^1	9×10^{-2}	1×10^1	1×10^4
U-233 (medium lung absorption) (e)	4×10^1	2×10^{-2}	1×10^2	1×10^5
U-233 (slow lung absorption) (f)	4×10^1	6×10^{-3}	1×10^1	1×10^5
U-234 (fast lung absorption) (d)	4×10^1	9×10^{-2}	1×10^1	1×10^4
U-234 (medium lung absorption) (e)	4×10^1	2×10^{-2}	1×10^2	1×10^5
U-234 (slow lung absorption) (f)	4×10^1	6×10^{-3}	1×10^1	1×10^5
U-235 (all lung absorption types) (a)(d)(e)(f)	Unlimited	Unlimited	1×10^1 (b)	1×10^4 (b)
U-236 (fast lung absorption) (d)	Unlimited	Unlimited	1×10^1	1×10^4
U-236 (medium lung absorption) (e)	4×10^1	2×10^{-2}	1×10^2	1×10^5
U-236 (slow lung absorption) (f)	4×10^1	6×10^{-3}	1×10^1	1×10^4
U-238 (all lung absorption types) (d)(e)(f)	Unlimited	Unlimited	1×10^1 (b)	1×10^4 (b)
U (natural)	Unlimited	Unlimited	1×10^0 (b)	1×10^3 (b)
U (enriched to 20 % or less) (g)	Unlimited	Unlimited	1×10^0	1×10^3
U (depleted)	Unlimited	Unlimited	1×10^0	1×10^3
Vanadium (23)				
V-48	4×10^{-1}	4×10^{-1}	1×10^1	1×10^5
V-49	4×10^1	4×10^1	1×10^4	1×10^7
Tungsten (74)				
W-178 (a)	9×10^0	5×10^0	1×10^1	1×10^6
W-181	3×10^1	3×10^1	1×10^3	1×10^7
W-185	4×10^1	8×10^{-1}	1×10^4	1×10^7
W-187	2×10^0	6×10^{-1}	1×10^2	1×10^6
W-188 (a)	4×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Xenon (54)				
Xe-122 (a)	4×10^{-1}	4×10^{-1}	1×10^2	1×10^9
Xe-123	2×10^0	7×10^{-1}	1×10^2	1×10^9
Xe-127	4×10^0	2×10^0	1×10^3	1×10^5
Xe-131m	4×10^1	4×10^1	1×10^4	1×10^4
Xe-133	2×10^1	1×10^1	1×10^3	1×10^4
Xe-135	3×10^0	2×10^0	1×10^3	1×10^{10}

Radionuclide (atomic number)	A ₁ (TBq)	A ₂ (TBq)	Activity concentration limit for exempt material (Bq/g)	Activity limit for an exempt consignment (Bq)
Yttrium (39)				
Y-87 (a)	1×10^0	1×10^0	1×10^1	1×10^6
Y-88	4×10^{-1}	4×10^{-1}	1×10^1	1×10^6
Y-90	3×10^{-1}	3×10^{-1}	1×10^3	1×10^5
Y-91	6×10^{-1}	6×10^{-1}	1×10^3	1×10^6
Y-91m	2×10^0	2×10^0	1×10^2	1×10^6
Y-92	2×10^{-1}	2×10^{-1}	1×10^2	1×10^5
Y-93	3×10^{-1}	3×10^{-1}	1×10^2	1×10^5
Ytterbium (70)				
Yb-169	4×10^0	1×10^0	1×10^2	1×10^7
Yb-175	3×10^1	9×10^{-1}	1×10^3	1×10^7
Zinc (30)				
Zn-65	2×10^0	2×10^0	1×10^1	1×10^6
Zn-69	3×10^0	6×10^{-1}	1×10^4	1×10^6
Zn-69m (a)	3×10^0	6×10^{-1}	1×10^2	1×10^6
Zirconium (40)				
Zr-88	3×10^0	3×10^0	1×10^2	1×10^6
Zr-93	Unlimited	Unlimited	1×10^3 (b)	1×10^7 (b)
Zr-95 (a)	2×10^0	8×10^{-1}	1×10^1	1×10^6
Zr-97 (a)	4×10^{-1}	4×10^{-1}	1×10^1 (b)	1×10^5 (b)

(a) A₁ and/or A₂ values for these parent radionuclides include contributions from their progeny with half-lives less than 10 days, as listed in the following:

Mg-28	Al-28
Ar-42	K-42
Ca-47	Sc-47
Ti-44	Sc-44
Fe-52	Mn-52m
Fe-60	Co-60m
Zn-69m	Zn-69
Ge-68	Ga-68
Rb-83	Kr-83m
Sr-82	Rb-82
Sr-90	Y-90
Sr-91	Y-91m
Sr-92	Y-92
Y-87	Sr-87m
Zr-95	Nb-95m
Zr-97	Nb-97m, Nb-97
Mo-99	Tc-99m
Tc-95m	Tc-95
Tc-96m	Tc-96
Ru-103	Rh-103m
Ru-106	Rh-106
Pd-103	Rh-103m
Ag-108m	Ag-108
Ag-110m	Ag-110
Cd-115	In-115m
In-114m	In-114
Sn-113	In-113m
Sn-121m	Sn-121
Sn-126	Sb-126m
Te-118	Sb-118
Te-127m	Te-127
Te-129m	Te-129
Te-131m	Te-131
Te-132	I-132

I-135	Xe-135m
Xe-122	I-122
Cs-137	Ba-137m
Ba-131	Cs-131
Ba-140	La-140
Ce-144	Pr-144m, Pr-144
Pm-148m	Pm-148
Gd-146	Eu-146
Dy-166	Ho-166
Hf-172	Lu-172
W-178	Ta-178
W-188	Re-188
Re-189	Os-189m
Os-194	Ir-194
Ir-189	Os-189m
Pt-188	Ir-188
Hg-194	Au-194
Hg-195m	Hg-195
Pb-210	Bi-210
Pb-212	Bi-212, Tl-208, Po-212
Bi-210m	Tl-206
Bi-212	Tl-208, Po-212
At-211	Po-211
Rn-222	Po-218, Pb-214, At-218, Bi-214, Po-214
Ra-223	Rn-219, Po-215, Pb-211, Bi-211, Po-211, Tl-207
Ra-224	Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
Ra-225	Ac-225, Fr-221, At-217, Bi-213, Tl-209, Po-213, Pb-209
Ra-226	Rn-222, Po-218, Pb-214, At-218, Bi-214, Po-214
Ra-228	Ac-228
Ac-225	Fr-221, At-217, Bi-213, Tl-209, Po-213, Pb-209
Ac-227	Fr-223
Th-228	Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208, Po-212
Th-234	Pa-234m, Pa-234
Pa-230	Ac-226, Th-226, Fr-222, Ra-222, Rn-218, Po-214
U-230	Th-226, Ra-222, Rn-218, Po-214
U-235	Th-231
Pu-241	U-237
Pu-244	U-240, Np-240m
Am-242m	Am-242, Np-238
Am-243	Np-239
Cm-247	Pu-243
Bk-249	Am-245
Cf-253	Cm-249

(b) Parent nuclides and their progeny included in secular equilibrium are listed in the following (the activity to be taken into account is that of the parent nuclide only):

Sr-90	Y-90
Zr-93	Nb-93m
Zr-97	Nb-97
Ru-106	Rh-106
Ag-108m	Ag-108
Cs-137	Ba-137m
Ce-144	Pr-144
Ba-140	La-140
Bi-212	Tl-208 (0.36), Po-212 (0.64)
Pb-210	Bi-210, Po-210
Pb-212	Bi-212, Tl-208 (0.36), Po-212 (0.64)
Rn-222	Po-218, Pb-214, Bi-214, Po-214
Ra-223	Rn-219, Po-215, Pb-211, Bi-211, Tl-207
Ra-224	Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64)
Ra-226	Rn-222, Po-218, Pb-214, Bi-214, Po-214, Pb-210, Bi-210, Po-210

Ra-228	Ac-228
Th-228	Ra-224, Rn-220, Po-216, Pb212, Bi-212, Tl208 (0.36), Po-212 (0.64)
Th-229	Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209
Th-nat ⁵	Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, I208 (0.36), Po-212 (0.64)
Th-234	Pa-234m
U-230	Th-226, Ra-222, Rn-218, Po-214
U-232	Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Tl-208 (0.36), Po-212 (0.64)
U-235	Th-231
U-238	Th-234, Pa-234m
U-nat ⁵	Th-234, Pa-234m, U-234, Th-230, Ra-226, Rn-222, Po-218, Pb-214, Bi-214, Po-214, Pb-210, Bi-210, Po-210
Np-237	Pa-233
Am-242m	Am-242
Am-243	Np-239

- (c) The quantity may be determined from a measurement of the rate of decay or a measurement of the dose rate at a prescribed distance from the source.
- (d) These values apply only to compounds of uranium that take the chemical form of UF₆, UO₂F₂ and UO₂(NO₃)₂ in both normal and accident conditions of carriage.
- (e) These values apply only to compounds of uranium that take the chemical form of UO₃, UF₄, UCl₄ and hexavalent compounds in both normal and accident conditions of carriage.
- (f) These values apply to all compounds of uranium other than those specified in (d) and (e) above.
- (g) These values apply to unirradiated uranium only.

2.2.7.2.2.2

For individual radionuclides:

- (a) Which are not listed in Table 2.2.7.2.2.1 the determination of the basic radionuclide values referred to in 2.2.7.2.2.1 shall require multilateral approval. For these radionuclides, activity concentration limits for exempt material and activity limits for exempt consignments shall be calculated in accordance with the principles established in "Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards", IAEA Safety Standards Series No. GSR Part 3, IAEA, Vienna (2014). It is permissible to use an A₂ value calculated using a dose coefficient for the appropriate lung absorption type as recommended by the International Commission on Radiological Protection, if the chemical forms of each radionuclide under both normal and accident conditions of carriage are taken into consideration. Alternatively, the radionuclide values in Table 2.2.7.2.2.2 may be used without obtaining competent authority approval;
- (b) In instruments or articles in which the radioactive material is enclosed or is included as a component part of the instrument or other manufactured article and which meet 2.2.7.2.4.1.3 (c), alternative basic radionuclide values to those in Table 2.2.7.2.2.1 for the activity limit for an exempt consignment are permitted and shall require multilateral approval. Such alternative activity limits for an exempt consignment shall be calculated in accordance with the principles set out in GSR Part 3.

⁵

In the case of Th-natural, the parent nuclide is Th-232, in the case of U-natural the parent nuclide is U-238.

Table 2.2.7.2.2.2: Basic radionuclide values for unknown radionuclides or mixtures

Radioactive contents	A₁	A₂	Activity concentration limit for exempt material	Activity limit for exempt consignments
	(TBq)	(TBq)	(Bq/g)	(Bq)
Only beta or gamma emitting nuclides are known to be present	0.1	0.02	1×10^1	1×10^4
Alpha emitting nuclides but no neutron emitters are known to be present	0.2	9×10^{-5}	1×10^{-1}	1×10^3
Neutron emitting nuclides are known to be present or no relevant data are available	0.001	9×10^{-5}	1×10^{-1}	1×10^3

2.2.7.2.2.3 In the calculations of A₁ and A₂ for a radionuclide not in Table 2.2.7.2.2.1, a single radioactive decay chain in which the radionuclides are present in their naturally occurring proportions, and in which no progeny nuclide has a half-life either longer than 10 days or longer than that of the parent nuclide, shall be considered as a single radionuclide; and the activity to be taken into account and the A₁ or A₂ value to be applied shall be those corresponding to the parent nuclide of that chain. In the case of radioactive decay chains in which any progeny nuclide has a half-life either longer than 10 days or greater than that of the parent nuclide, the parent and such progeny nuclides shall be considered as mixtures of different nuclides.

2.2.7.2.2.4 For mixtures of radionuclides, the basic radionuclide values referred to in 2.2.7.2.2.1 may be determined as follows:

$$X_m = \frac{1}{\sum_i \frac{f(i)}{X(i)}}$$

where,

f(i) is the fraction of activity or activity concentration of radionuclide i in the mixture;

X(i) is the appropriate value of A₁ or A₂, or the activity concentration limit for exempt material or the activity limit for an exempt consignment as appropriate for the radionuclide i; and

X_m is the derived value of A₁ or A₂, or the activity concentration limit for exempt material or the activity limit for an exempt consignment in the case of a mixture.

2.2.7.2.2.5 When the identity of each radionuclide is known but the individual activities of some of the radionuclides are not known, the radionuclides may be grouped and the lowest radionuclide value, as appropriate, for the radionuclides in each group may be used in applying the formulas in 2.2.7.2.2.4 and 2.2.7.2.4.4. Groups may be based on the total alpha activity and the total beta/gamma activity when these are known, using the lowest radionuclide values for the alpha emitters or beta/gamma emitters, respectively.

2.2.7.2.2.6 For individual radionuclides or for mixtures of radionuclides for which relevant data are not available, the values shown in Table 2.2.7.2.2.2 shall be used.

2.2.7.2.3 *Determination of other material characteristics*

2.2.7.2.3.1 Low specific activity (LSA) material

2.2.7.2.3.1.1 *(Reserved)*

2.2.7.2.3.1.2 LSA material shall be in one of three groups:

(a) LSA-I

(i) Uranium and thorium ores and concentrates of such ores, and other ores containing naturally occurring radionuclides;

- (ii) Natural uranium, depleted uranium, natural thorium or their compounds or mixtures, that are unirradiated and in solid or liquid form;
- (iii) Radioactive material for which the A_2 value is unlimited. Fissile material may be included only if excepted under 2.2.7.2.3.5;
- (iv) Other radioactive material in which the activity is distributed throughout and the estimated average specific activity does not exceed 30 times the values for activity concentration specified in 2.2.7.2.2.1 to 2.2.7.2.2.6. Fissile material may be included only if excepted under 2.2.7.2.3.5;

(b) LSA-II

- (i) Water with tritium concentration up to 0.8 TBq/l;
- (ii) Other material in which the activity is distributed throughout and the estimated average specific activity does not exceed $10^{-4} A_2/g$ for solids and gases, and $10^{-5} A_2/g$ for liquids;

(c) LSA-III - Solids (e.g. consolidated wastes, activated materials), excluding powders, in which:

- (i) The radioactive material is distributed throughout a solid or a collection of solid objects, or is essentially uniformly distributed in a solid compact binding agent (such as concrete, bitumen and ceramic);
- (ii) The estimated average specific activity of the solid, excluding any shielding material, does not exceed $2 \times 10^{-3} A_2/g$.

2.2.7.2.3.1.3 to 2.2.7.2.3.1.5 *(Deleted)*

2.2.7.2.3.2 Surface contaminated object (SCO)

SCO is classified in one of three groups:

(a) SCO-I: A solid object on which:

- (i) The non-fixed contamination on the accessible surface averaged over 300 cm^2 (or the area of the surface if less than 300 cm^2) does not exceed 4 Bq/cm^2 for beta and gamma emitters and low toxicity alpha emitters, or 0.4 Bq/cm^2 for all other alpha emitters; and
- (ii) The fixed contamination on the accessible surface averaged over 300 cm^2 (or the area of the surface if less than 300 cm^2) does not exceed $4 \times 10^4 \text{ Bq/cm}^2$ for beta and gamma emitters and low toxicity alpha emitters, or $4 \times 10^3 \text{ Bq/cm}^2$ for all other alpha emitters; and
- (iii) The non-fixed contamination plus the fixed contamination on the inaccessible surface averaged over 300 cm^2 (or the area of the surface if less than 300 cm^2) does not exceed $4 \times 10^4 \text{ Bq/cm}^2$ for beta and gamma emitters and low toxicity alpha emitters, or $4 \times 10^3 \text{ Bq/cm}^2$ for all other alpha emitters;

(b) SCO-II: A solid object on which either the fixed or non-fixed contamination on the surface exceeds the applicable limits specified for SCO-I in (a) above and on which:

- (i) The non-fixed contamination on the accessible surface averaged over 300 cm^2 (or the area of the surface if less than 300 cm^2) does not exceed 400 Bq/cm^2 for beta and gamma emitters and low toxicity alpha emitters, or 40 Bq/cm^2 for all other alpha emitters; and
- (ii) The fixed contamination on the accessible surface, averaged over 300 cm^2 (or the area of the surface if less than 300 cm^2) does not exceed $8 \times 10^5 \text{ Bq/cm}^2$ for beta and gamma emitters and low toxicity alpha emitters, or $8 \times 10^4 \text{ Bq/cm}^2$ for all other alpha emitters; and
- (iii) The non-fixed contamination plus the fixed contamination on the inaccessible surface averaged over 300 cm^2 (or the area of the surface if less than 300 cm^2) does not exceed $8 \times 10^5 \text{ Bq/cm}^2$ for beta and gamma emitters and low toxicity alpha emitters, or $8 \times 10^4 \text{ Bq/cm}^2$ for all other alpha emitters;

(c) SCO-III: A large solid object which, because of its size, cannot be carried in a type of package described in ADR and for which:

- (i) All openings are sealed to prevent release of radioactive material during conditions defined in 4.1.9.2.4 (e);
- (ii) The inside of the object is as dry as practicable;
- (iii) The non-fixed contamination on the external surfaces does not exceed the limits specified in 4.1.9.1.2; and
- (iv) The non-fixed contamination plus the fixed contamination on the inaccessible surface averaged over 300 cm² does not exceed 8×10^5 Bq/cm² for beta and gamma emitters and low toxicity alpha emitters, or 8×10^4 Bq/cm² for all other alpha emitters.

2.2.7.2.3.3 Special form radioactive material

2.2.7.2.3.3.1 Special form radioactive material shall have at least one dimension not less than 5 mm. When a sealed capsule constitutes part of the special form radioactive material, the capsule shall be so manufactured that it can be opened only by destroying it. The design for special form radioactive material requires unilateral approval.

2.2.7.2.3.3.2 Special form radioactive material shall be of such a nature or shall be so designed that if it is subjected to the tests specified in 2.2.7.2.3.3.4 to 2.2.7.2.3.3.8, it shall meet the following requirements:

- (a) It would not break or shatter under the impact, percussion and bending tests 2.2.7.2.3.3.5 (a), (b), (c) and 2.2.7.2.3.3.6 (a) as applicable;
- (b) It would not melt or disperse in the applicable heat test 2.2.7.2.3.3.5 (d) or 2.2.7.2.3.3.6 (b) as applicable; and
- (c) The activity in the water from the leaching tests specified in 2.2.7.2.3.3.7 and 2.2.7.2.3.3.8 would not exceed 2 kBq; or alternatively for sealed sources, the leakage rate for the volumetric leakage assessment test specified in ISO 9978:1992 "Radiation Protection - Sealed Radioactive Sources - Leakage Test Methods", would not exceed the applicable acceptance threshold acceptable to the competent authority.

2.2.7.2.3.3.3 Demonstration of compliance with the performance standards in 2.2.7.2.3.3.2 shall be in accordance with 6.4.12.1 and 6.4.12.2.

2.2.7.2.3.3.4 Specimens that comprise or simulate special form radioactive material shall be subjected to the impact test, the percussion test, the bending test, and the heat test specified in 2.2.7.2.3.3.5 or alternative tests as authorized in 2.2.7.2.3.3.6. A different specimen may be used for each of the tests. Following each test, a leaching assessment or volumetric leakage test shall be performed on the specimen by a method no less sensitive than the methods given in 2.2.7.2.3.3.7 for indispersible solid material or 2.2.7.2.3.3.8 for encapsulated material.

2.2.7.2.3.3.5 The relevant test methods are:

- (a) Impact test: The specimen shall drop onto the target from a height of 9 m. The target shall be as defined in 6.4.14;
- (b) Percussion test: The specimen shall be placed on a sheet of lead which is supported by a smooth solid surface and struck by the flat face of a mild steel bar so as to cause an impact equivalent to that resulting from a free drop of 1.4 kg from a height of 1 m. The lower part of the bar shall be 25 mm in diameter with the edges rounded off to a radius of (3.0 ± 0.3) mm. The lead, of hardness number 3.5 to 4.5 on the Vickers scale and not more than 25 mm thick, shall cover an area greater than that covered by the specimen. A fresh surface of lead shall be used for each impact. The bar shall strike the specimen so as to cause maximum damage;
- (c) Bending test: The test shall apply only to long, slender sources with both a minimum length of 10 cm and a length to minimum width ratio of not less than 10. The specimen shall be rigidly clamped in a horizontal position so that one half of its length protrudes from the face of the clamp. The orientation of the specimen shall be such that the specimen will suffer maximum damage when its free end is struck by the flat face of a steel bar. The bar shall strike the specimen

so as to cause an impact equivalent to that resulting from a free vertical drop of 1.4 kg from a height of 1 m. The lower part of the bar shall be 25 mm in diameter with the edges rounded off to a radius of (3.0 ± 0.3) mm;

(d) Heat test: The specimen shall be heated in air to a temperature of 800°C and held at that temperature for a period of 10 minutes and shall then be allowed to cool.

2.2.7.2.3.3.6 Specimens that comprise or simulate radioactive material enclosed in a sealed capsule may be excepted from:

(a) The tests prescribed in 2.2.7.2.3.3.5 (a) and (b) provided that the specimens are alternatively subjected to the impact test prescribed in ISO 2919:2012: "Radiation Protection - Sealed Radioactive Sources - General requirements and classification":

- (i) The Class 4 impact test if the mass of the special form radioactive material is less than 200 g;
- (ii) The Class 5 impact test if the mass of the special form radioactive material is equal to or more than 200 g but is less than 500 g;

(b) The test prescribed in 2.2.7.2.3.3.5 (d) provided they are alternatively subjected to the Class 6 temperature test specified in ISO 2919:2012 "Radiation protection - Sealed radioactive sources - General requirements and classification".

2.2.7.2.3.3.7 For specimens which comprise or simulate indispersible solid material, a leaching assessment shall be performed as follows:

- (a) The specimen shall be immersed for 7 days in water at ambient temperature. The volume of water to be used in the test shall be sufficient to ensure that at the end of the 7 day test period the free volume of the unabsorbed and unreacted water remaining shall be at least 10 % of the volume of the solid test sample itself. The water shall have an initial pH of 6-8 and a maximum conductivity of 1 mS/m at 20°C ;
- (b) The water and the specimen shall then be heated to a temperature of $(50 \pm 5)^{\circ}\text{C}$ and maintained at this temperature for 4 hours;
- (c) The activity of the water shall then be determined;
- (d) The specimen shall then be kept for at least 7 days in still air at not less than 30°C and relative humidity not less than 90 %;
- (e) The specimen shall then be immersed in water of the same specification as in (a) above and the water and the specimen heated to $(50 \pm 5)^{\circ}\text{C}$ and maintained at this temperature for 4 hours;
- (f) The activity of the water shall then be determined.

2.2.7.2.3.3.8 For specimens which comprise or simulate radioactive material enclosed in a sealed capsule, either a leaching assessment or a volumetric leakage assessment shall be performed as follows:

- (a) The leaching assessment shall consist of the following steps:
 - (i) The specimen shall be immersed in water at ambient temperature. The water shall have an initial pH of 6-8 with a maximum conductivity of 1 mS/m at 20°C ;
 - (ii) The water and specimen shall then be heated to a temperature of $(50 \pm 5)^{\circ}\text{C}$ and maintained at this temperature for 4 hours;
 - (iii) The activity of the water shall then be determined;
 - (iv) The specimen shall then be kept for at least 7 days in still air at not less than 30°C and relative humidity of not less than 90 %;
 - (v) The process in (i), (ii) and (iii) shall be repeated;

(b) The alternative volumetric leakage assessment shall comprise any of the tests prescribed in ISO 9978:1992 "Radiation Protection - Sealed radioactive sources - Leakage test methods", provided that they are acceptable to the competent authority.

2.2.7.2.3.4 Low dispersible radioactive material

2.2.7.2.3.4.1 The design for low dispersible radioactive material shall require multilateral approval. Low dispersible radioactive material shall be such that the total amount of this radioactive material in a package, taking into account the provisions of 6.4.8.14, shall meet the following requirements:

- (a) The dose rate at 3 m from the unshielded radioactive material does not exceed 10 mSv/h;
- (b) If subjected to the tests specified in 6.4.20.3 and 6.4.20.4, the airborne release in gaseous and particulate forms of up to 100 µm aerodynamic equivalent diameter would not exceed 100 A₂. A separate specimen may be used for each test; and
- (c) If subjected to the test specified in 2.2.7.2.3.4.3 the activity in the water would not exceed 100 A₂. In the application of this test, the damaging effects of the tests specified in (b) above shall be taken into account.

2.2.7.2.3.4.2 Low dispersible radioactive material shall be tested as follows:

A specimen that comprises or simulates low dispersible radioactive material shall be subjected to the enhanced thermal test specified in 6.4.20.3 and the impact test specified in 6.4.20.4. A different specimen may be used for each of the tests. Following each test, the specimen shall be subjected to the leach test specified in 2.2.7.2.3.4.3. After each test it shall be determined if the applicable requirements of 2.2.7.2.3.4.1 have been met.

2.2.7.2.3.4.3 A solid material sample representing the entire contents of the package shall be immersed for 7 days in water at ambient temperature. The volume of water to be used in the test shall be sufficient to ensure that at the end of the 7-day test period the free volume of the unabsorbed and unreacted water remaining shall be at least 10 % of the volume of the solid test sample itself. The water shall have an initial pH of 6-8 and a maximum conductivity of 1 mS/m at 20 °C. The total activity of the free volume of water shall be measured following the 7-day immersion of the test sample.

2.2.7.2.3.4.4 Demonstration of compliance with the performance standards in 2.2.7.2.3.4.1, 2.2.7.2.3.4.2 and 2.2.7.2.3.4.3 shall be in accordance with 6.4.12.1 and 6.4.12.2.

2.2.7.2.3.5 Fissile material

Fissile material and packages containing fissile material shall be classified under the relevant entry as "FISSILE" in accordance with Table 2.2.7.2.1.1 unless excepted by one of the provisions of sub-paragraphs (a) to (f) below and carried subject to the requirements of 7.5.11 CV33 (4.3). All provisions apply only to material in packages that meets the requirements of 6.4.7.2 unless unpackaged material is specifically allowed in the provision.

- (a) Uranium enriched in uranium-235 to a maximum of 1 % by mass, and with a total plutonium and uranium-233 content not exceeding 1 % of the mass of uranium-235, provided that the fissile nuclides are distributed essentially homogeneously throughout the material. In addition, if uranium-235 is present in metallic, oxide or carbide forms, it shall not form a lattice arrangement;
- (b) Liquid solutions of uranyl nitrate enriched in uranium-235 to a maximum of 2 % by mass, with a total plutonium and uranium-233 content not exceeding 0.002 % of the mass of uranium, and with a minimum nitrogen to uranium atomic ratio (N/U) of 2;
- (c) Uranium with a maximum uranium enrichment of 5 % by mass uranium-235 provided:
 - (i) There is no more than 3.5 g of uranium-235 per package;
 - (ii) The total plutonium and uranium-233 content does not exceed 1 % of the mass of uranium-235 per package;
 - (iii) Carriage of the package is subject to the consignment limit provided in 7.5.11 CV33 (4.3) (c);

(d) Fissile nuclides with a total mass not greater than 2.0 g per package provided the package is carried subject to the consignment limit provided in 7.5.11 CV33 (4.3) (d);

(e) Fissile nuclides with a total mass not greater than 45 g either packaged or unpackaged subject to the requirements of 7.5.11 CV33 (4.3) (e);

(f) A fissile material that meets the requirements of 7.5.11 CV33 (4.3) (b), 2.2.7.2.3.6 and 5.1.5.2.1.

2.2.7.2.3.6 Fissile material excepted from classification as “FISSILE” under 2.2.7.2.3.5 (f) shall be subcritical without the need for accumulation control under the following conditions:

(a) The conditions of 6.4.11.1 (a);

(b) The conditions consistent with the assessment provisions stated in 6.4.11.12 (b) and 6.4.11.13 (b) for packages.

2.2.7.2.4 Classification of packages or unpacked material

The quantity of radioactive material in a package shall not exceed the relevant limits for the package type as specified below.

2.2.7.2.4.1 Classification as excepted package

2.2.7.2.4.1.1 A package may be classified as an excepted package if it meets one of the following conditions:

(a) It is an empty package having contained radioactive material;

(b) It contains instruments or articles not exceeding the activity limits specified in columns (2) and (3) of Table 2.2.7.2.4.1.2;

(c) It contains articles manufactured of natural uranium, depleted uranium or natural thorium;

(d) It contains radioactive material not exceeding the activity limits specified in column (4) of Table 2.2.7.2.4.1.2; or

(e) It contains less than 0.1 kg of uranium hexafluoride not exceeding the activity limits specified in column (4) of Table 2.2.7.2.4.1.2.

2.2.7.2.4.1.2 A package containing radioactive material may be classified as an excepted package provided that the dose rate at any point on its external surface does not exceed 5 μ Sv/h.

Table 2.2.7.2.4.1.2: Activity limits for excepted packages

Physical state of contents	Instruments or articles		Materials Package limits ^a
	Item limits ^a	Package limits ^a	
(1)	(2)	(3)	(4)
Solids			
special form	$10^{-2} A_1$	A_1	$10^{-3} A_1$
other form	$10^{-2} A_2$	A_2	$10^{-3} A_2$
Liquids	$10^{-3} A_2$	$10^{-1} A_2$	$10^{-4} A_2$
Gases			
tritium	$2 \times 10^{-2} A_2$	$2 \times 10^{-1} A_2$	$2 \times 10^{-2} A_2$
special form	$10^{-3} A_1$	$10^{-2} A_1$	$10^{-3} A_1$
other forms	$10^{-3} A_2$	$10^{-2} A_2$	$10^{-3} A_2$

^a For mixtures of radionuclides, see 2.2.7.2.4 to 2.2.7.2.2.6.

2.2.7.2.4.1.3 Radioactive material which is enclosed in or is included as a component part of an instrument or other manufactured article may be classified under UN No. 2911 RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - INSTRUMENTS or ARTICLES provided that:

(a) The dose rate at 10 cm from any point on the external surface of any unpackaged instrument or article is not greater than 0.1 mSv/h;

(b) Each instrument or manufactured article bears the mark "RADIOACTIVE" on its external surface except for the following:

- (i) Radioluminescent time-pieces or devices;
- (ii) Consumer products that have either received regulatory approval in accordance with 1.7.1.4 (e) or do not individually exceed the activity limit for an exempt consignment in Table 2.2.7.2.2.1 (column 5), provided such products are transported in a package that bears the mark "RADIOACTIVE" on its internal surface in such a manner that a warning of the presence of radioactive material is visible on opening the package; and
- (iii) Other instruments or articles too small to bear the mark "RADIOACTIVE", provided that they are transported in a package that bears the mark "RADIOACTIVE" on its internal surface in such a manner that a warning of the presence of radioactive material is visible on opening the package;

(c) The active material is completely enclosed by non-active components (a device performing the sole function of containing radioactive material shall not be considered to be an instrument or manufactured article);

(d) The limits specified in columns 2 and 3 of Table 2.2.7.2.4.1.2 are met for each individual item and each package, respectively;

(e) *(Reserved)*;

(f) If the package contains fissile material, one of the provisions of 2.2.7.2.3.5 (a) to (f) applies.

2.2.7.2.4.1.4 Radioactive material in forms other than as specified in 2.2.7.2.4.1.3 and with an activity not exceeding the limits specified in column 4 of Table 2.2.7.2.4.1.2, may be classified under UN No. 2910 RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - LIMITED QUANTITY OF MATERIAL provided that:

- (a) The package retains its radioactive contents under routine conditions of carriage;
- (b) The package bears the mark "RADIOACTIVE" on either:
 - (i) An internal surface in such a manner that a warning of the presence of radioactive material is visible on opening the package; or
 - (ii) The outside of the package, where it is impractical to mark an internal surface; and
- (c) If the package contains fissile material, one of the provisions of 2.2.7.2.3.5 (a) to (f) applies.

2.2.7.2.4.1.5 Uranium hexafluoride not exceeding the limits specified in column 4 of Table 2.2.7.2.4.1.2 may be classified under UN No. 3507 URANIUM HEXAFLUORIDE, RADIOACTIVE MATERIAL, EXCEPTED PACKAGE, less than 0.1 kg per package, non-fissile or fissile-excepted provided that:

- (a) The mass of uranium hexafluoride in the package is less than 0.1 kg;
- (b) The conditions of 2.2.7.2.4.5.2 and 2.2.7.2.4.1.4 (a) and (b) are met.

2.2.7.2.4.1.6 Articles manufactured of natural uranium, depleted uranium or natural thorium and articles in which the sole radioactive material is unirradiated natural uranium, unirradiated depleted uranium or unirradiated natural thorium may be classified under UN No. 2909 RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - ARTICLES MANUFACTURED FROM NATURAL URANIUM or DEPLETED URANIUM or NATURAL THORIUM, provided that the outer surface of the uranium or thorium is enclosed in an inactive sheath made of metal or some other substantial material.

2.2.7.2.4.1.7 An empty packaging which had previously contained radioactive material may be classified under UN No. 2908 RADIOACTIVE MATERIAL, EXCEPTED PACKAGE - EMPTY PACKAGING, provided that:

- (a) It is in a well-maintained condition and securely closed;

- (b) The outer surface of any uranium or thorium in its structure is covered with an inactive sheath made of metal or some other substantial material;
- (c) The level of internal non-fixed contamination, when averaged over any 300 cm², does not exceed:
 - (i) 400 Bq/cm² for beta and gamma emitters and low toxicity alpha emitters; and
 - (ii) 40 Bq/cm² for all other alpha emitters;
- (d) Any labels which may have been displayed on it in conformity with 5.2.2.1.11.1 are no longer visible; and
- (e) If the packaging has contained fissile material, one of the provisions of 2.2.7.2.3.5 (a) to (f) or one of the provisions for exclusion in 2.2.7.1.3 applies.

2.2.7.2.4.2 Classification as Low specific activity (LSA) material

Radioactive material may only be classified as LSA material if the definition of LSA in 2.2.7.1.3 and the conditions of 2.2.7.2.3.1, 4.1.9.2 and 7.5.11 CV33 (2) are met.

2.2.7.2.4.3 Classification as Surface contaminated object (SCO)

Radioactive material may be classified as SCO if the definition of SCO in 2.2.7.1.3 and the conditions of 2.2.7.2.3.2, 4.1.9.2 and 7.5.11 CV33 (2) are met.

2.2.7.2.4.4 Classification as Type A package

Packages containing radioactive material may be classified as Type A packages provided that the following conditions are met:

Type A packages shall not contain activities greater than either of the following:

- (a) For special form radioactive material - A₁;
- (b) For all other radioactive material - A₂.

For mixtures of radionuclides whose identities and respective activities are known, the following condition shall apply to the radioactive contents of a Type A package:

$$\sum_i \frac{B(i)}{A_1(i)} + \sum_j \frac{C(j)}{A_2(j)} \leq 1$$

where B(i) is the activity of radionuclide i as special form radioactive material;

A₁(i) is the A₁ value for radionuclide i;

C(j) is the activity of radionuclide j as other than special form radioactive material;

A₂(j) is the A₂ value for radionuclide j.

2.2.7.2.4.5 Classification of uranium hexafluoride

2.2.7.2.4.5.1 Uranium hexafluoride shall only be assigned to:

- (a) UN No. 2977, RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, FISSION;
- (b) UN No. 2978, RADIOACTIVE MATERIAL, URANIUM HEXAFLUORIDE, non-fissile or fissile-excepted; or
- (c) UN No. 3507, URANIUM HEXAFLUORIDE, RADIOACTIVE MATERIAL, EXCEPTED PACKAGE less than 0.1 kg per package, non-fissile or fissile-excepted.

2.2.7.2.4.5.2 The contents of a package containing uranium hexafluoride shall comply with the following requirements:

- (a) For UN Nos. 2977 and 2978, the mass of uranium hexafluoride shall not be different from that allowed for the package design, and for UN No. 3507, the mass of uranium hexafluoride shall be less than 0.1 kg;
- (b) The mass of uranium hexafluoride shall not be greater than a value that would lead to an ullage smaller than 5 % at the maximum temperature of the package as specified for the plant systems where the package shall be used; and
- (c) The uranium hexafluoride shall be in solid form and the internal pressure shall not be above atmospheric pressure when presented for carriage.

2.2.7.2.4.6 Classification as Type B(U), Type B(M) or Type C packages

2.2.7.2.4.6.1 Packages not otherwise classified in 2.2.7.2.4 (2.2.7.2.4.1 to 2.2.7.2.4.5) shall be classified in accordance with the competent authority certificate of approval for the package issued by the country of origin of design.

2.2.7.2.4.6.2 The contents of a Type B(U), Type B(M) or Type C package shall be as specified in the certificate of approval.

2.2.7.2.5 *Special arrangements*

Radioactive material shall be classified as transported under special arrangement when it is intended to be carried in accordance with 1.7.4.

2.2.8 Class 8 Corrosive substances**2.2.8.1 Definition, general provisions and criteria**

Corrosive substances are substances which, by chemical action, will cause irreversible damage to the skin, or, in the case of leakage, will materially damage, or even destroy, other goods or the means of transport. The heading of this class also covers other substances which form a corrosive liquid only in the presence of water, or which produce corrosive vapour or mist in the presence of natural moisture of the air.

2.2.8.1.2 For substances and mixtures that are corrosive to skin, general classification provisions are provided in 2.2.8.1.4. Skin corrosion refers to the production of irreversible damage to the skin, namely, visible necrosis through the epidermis and into the dermis occurring after exposure to a substance or mixture.

2.2.8.1.3 Liquids and solids which may become liquid during carriage, which are judged not to be skin corrosive shall still be considered for their potential to cause corrosion to certain metal surfaces in accordance with the criteria in 2.2.8.1.5.3 (c) (ii).

2.2.8.1.4 General classification provisions

2.2.8.1.4.1 Substances and articles of Class 8 are subdivided as follows:

C1-C11 Corrosive substances without subsidiary risk and articles containing such substances:

C1-C4 Acid substances:

- C1 Inorganic, liquid;
- C2 Inorganic, solid;
- C3 Organic, liquid;
- C4 Organic, solid;

C5-C8 Basic substances:

- C5 Inorganic, liquid;
- C6 Inorganic, solid;
- C7 Organic, liquid;
- C8 Organic, solid;

C9-C10 Other corrosive substances:

- C9 Liquid;
- C10 Solid;

C11 Articles;

CF Corrosive substances, flammable:

- CF1 Liquid;
- CF2 Solid;

CS Corrosive substances, self-heating:

- CS1 Liquid;
- CS2 Solid;

CW Corrosive substances which, in contact with water, emit flammable gases:

- CW1 Liquid;
- CW2 Solid;

CO Corrosive substances, oxidizing:

- CO1 Liquid;
- CO2 Solid;

CT	Corrosive substances, toxic and articles containing such substances: CT1 Liquid; CT2 Solid; CT3 Articles;
CFT	Corrosive substances, flammable, liquid, toxic;
COT	Corrosive substances, oxidizing, toxic.
2.2.8.1.4.2	Substances and mixtures of Class 8 are divided among the three packing groups according to their degree of danger in carriage: (a) Packing group I: very dangerous substances and mixtures; (b) Packing group II: substances and mixtures presenting medium danger; (c) Packing group III: substances and mixtures that present minor danger.
2.2.8.1.4.3	Allocation of substances listed in Table A of Chapter 3.2 to the packing groups in Class 8 has been made on the basis of experience taking into account such additional factors as inhalation risk (see 2.2.8.1.4.5) and reactivity with water (including the formation of dangerous decomposition products).
2.2.8.1.4.4	New substances and mixtures can be assigned to packing groups on the basis of the length of time of contact necessary to produce irreversible damage of intact skin tissue in accordance with the criteria in 2.2.8.1.5. Alternatively, for mixtures, the criteria in 2.2.8.1.6 can be used.
2.2.8.1.4.5	A substance or mixture meeting the criteria of Class 8 having an inhalation toxicity of dusts and mists (LC ₅₀) in the range of packing group I, but toxicity through oral ingestion or dermal contact only in the range of packing group III or less, shall be allocated to Class 8 (see 2.2.61.1.7.2).
2.2.8.1.5	<i>Packing group assignment for substances and mixtures</i>
2.2.8.1.5.1	Existing human and animal data including information from single or repeated exposure shall be the first line of evaluation, as they give information directly relevant to effects on the skin.
2.2.8.1.5.2	In assigning the packing group in accordance with 2.2.8.1.4.4, account shall be taken of human experience in instances of accidental exposure. In the absence of human experience classification shall be based on data obtained from experiments in accordance with OECD Test Guidelines Nos. 404 ⁶ , 435 ⁷ , 431 ⁸ or 430 ⁹ . A substance or mixture which is determined not to be corrosive in accordance with one of these or non-classified in accordance with OECD Test Guideline No. 439 ¹⁰ may be considered not to be corrosive to skin for the purposes of ADR without further testing. If the test results indicate that the substance or mixture is corrosive and not assigned to packing group I, but the test method does not allow discrimination between packing groups II and III, it shall be considered to be packing group II. If the test results indicate that the substance or mixture is corrosive, but the test method does not allow discrimination between packing groups, it shall be assigned to packing group I if no other test results indicate a different packing group.
2.2.8.1.5.3	Packing groups are assigned to corrosive substances in accordance with the following criteria (see table 2.2.8.1.5.3):

⁶ OECD Guideline for the testing of chemicals No. 404 "Acute Dermal Irritation/Corrosion" 2015.

⁷ OECD Guideline for the testing of chemicals No. 435 "In Vitro Membrane Barrier Test Method for Skin Corrosion" 2015.

⁸ OECD Guideline for the testing of chemicals No. 431 "In Vitro Skin Corrosion: reconstructed human epidermis (RHE) test method" 2016.

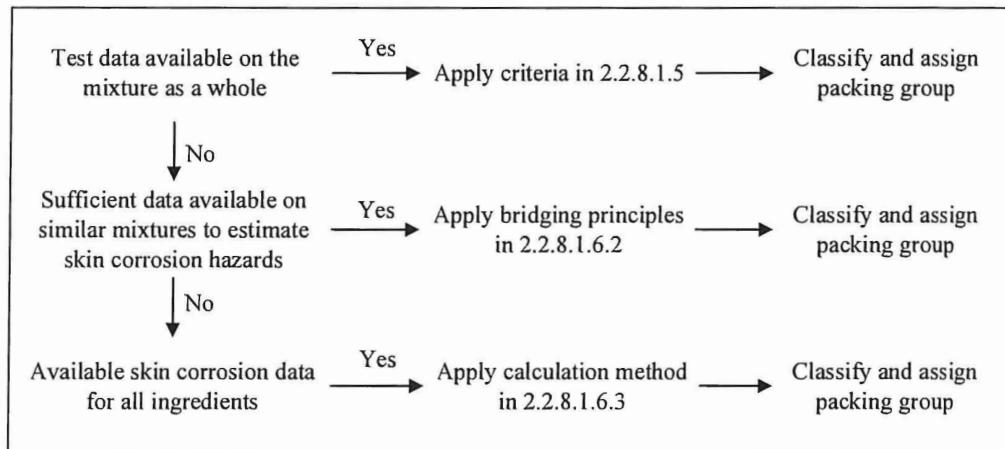
⁹ OECD Guideline for the testing of chemicals No. 430 "In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test Method (TER)" 2015.

¹⁰ OECD Guideline for the testing of chemicals No. 439 "In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method" 2015.

- (a) Packing group I is assigned to substances that cause irreversible damage of intact skin tissue within an observation period up to 60 minutes starting after the exposure time of three minutes or less;
- (b) Packing group II is assigned to substances that cause irreversible damage of intact skin tissue within an observation period up to 14 days starting after the exposure time of more than three minutes but not more than 60 minutes;
- (c) Packing group III is assigned to substances that:
 - (i) Cause irreversible damage of intact skin tissue within an observation period up to 14 days starting after the exposure time of more than 60 minutes but not more than 4 hours; or
 - (ii) Are judged not to cause irreversible damage of intact skin tissue but which exhibit a corrosion rate on either steel or aluminium surfaces exceeding 6.25 mm a year at a test temperature of 55 °C when tested on both materials. For the purposes of testing steel, type S235JR+CR (1.0037 resp. St 37-2), S275J2G3+CR (1.0144 resp. St 44-3), ISO 3574, Unified Numbering System (UNS) G10200 or SAE 1020, and for testing aluminium, non-clad, types 7075-T6 or AZ5GU-T6 shall be used. An acceptable test is prescribed in the *Manual of Tests and Criteria*, Part III, Section 37.

NOTE: Where an initial test on either steel or aluminium indicates the substance being tested is corrosive the follow up test on the other metal is not required.

Table 2.2.8.1.5.3: Table summarizing the criteria in 2.2.8.1.5.3


Packing Group	Exposure Time	Observation Period	Effect
I	≤ 3 min	≤ 60 min	Irreversible damage of intact skin
II	> 3 min ≤ 1 h	≤ 14 d	Irreversible damage of intact skin
III	> 1 h ≤ 4 h	≤ 14 d	Irreversible damage of intact skin
III	-	-	Corrosion rate on either steel or aluminium surfaces exceeding 6.25 mm a year at a test temperature of 55 °C when tested on both materials

2.2.8.1.6 Alternative packing group assignment methods for mixtures: Step-wise approach

2.2.8.1.6.1 General provisions

For mixtures it is necessary to obtain or derive information that allows the criteria to be applied to the mixture for the purpose of classification and assignment of packing groups. The approach to classification and assignment of packing groups is tiered, and is dependent upon the amount of information available for the mixture itself, for similar mixtures and/or for its ingredients. The flow chart of Figure 2.2.8.1.6.1 below outlines the process to be followed:

Figure 2.2.8.1.6.1: Step-wise approach to classify and assign packing group of corrosive mixtures

2.2.8.1.6.2 Bridging principles

Where a mixture has not been tested to determine its skin corrosion potential, but there are sufficient data on both the individual ingredients and similar tested mixtures to adequately classify and assign a packing group for the mixture, these data will be used in accordance with the following bridging principles. This ensures that the classification process uses the available data to the greatest extent possible in characterizing the hazards of the mixture.

- (a) Dilution: If a tested mixture is diluted with a diluent which does not meet the criteria for Class 8 and does not affect the packing group of other ingredients, then the new diluted mixture may be assigned to the same packing group as the original tested mixture.

NOTE: In certain cases, diluting a mixture or substance may lead to an increase in the corrosive properties. If this is the case, this bridging principle cannot be used.

- (b) Batching: The skin corrosion potential of a tested production batch of a mixture can be assumed to be substantially equivalent to that of another untested production batch of the same commercial product when produced by or under the control of the same manufacturer, unless there is reason to believe there is significant variation such that the skin corrosion potential of the untested batch has changed. If the latter occurs, a new classification is necessary.

- (c) Concentration of mixtures of packing group I: If a tested mixture meeting the criteria for inclusion in packing group I is concentrated, the more concentrated untested mixture may be assigned to packing group I without additional testing.

- (d) Interpolation within one packing group: For three mixtures (A, B and C) with identical ingredients, where mixtures A and B have been tested and are in the same skin corrosion packing group, and where untested mixture C has the same Class 8 ingredients as mixtures A and B but has concentrations of Class 8 ingredients intermediate to the concentrations in mixtures A and B, then mixture C is assumed to be in the same skin corrosion packing group as A and B.

- (e) Substantially similar mixtures: Given the following:

- (i) Two mixtures: (A+B) and (C+B);
- (ii) The concentration of ingredient B is the same in both mixtures;
- (iii) The concentration of ingredient A in mixture (A+B) equals the concentration of ingredient C in mixture (C+B);
- (iv) Data on skin corrosion for ingredients A and C are available and substantially equivalent, i.e. they are the same skin corrosion packing group and do not affect the skin corrosion potential of B.

If mixture (A+B) or (C+B) is already classified based on test data, then the other mixture may be assigned to the same packing group.

2.2.8.1.6.3 Calculation method based on the classification of the substances

2.2.8.1.6.3.1 Where a mixture has not been tested to determine its skin corrosion potential, nor is sufficient data available on similar mixtures, the corrosive properties of the substances in the mixture shall be considered to classify and assign a packing group.

Applying the calculation method is only allowed if there are no synergistic effects that make the mixture more corrosive than the sum of its substances. This restriction applies only if packing group II or III would be assigned to the mixture.

2.2.8.1.6.3.2 When using the calculation method, all Class 8 ingredients present at a concentration of $\geq 1\%$ shall be taken into account, or $< 1\%$ if these ingredients are still relevant for classifying the mixture to be corrosive to skin.

2.2.8.1.6.3.3 To determine whether a mixture containing corrosive substances shall be considered a corrosive mixture and to assign a packing group, the calculation method in the flow chart in Figure 2.2.8.1.6.3 shall be applied. For this calculation method, generic concentration limits apply where 1 % is used in the first step for the assessment of the packing group I substances, and where 5 % is used for the other steps respectively.

2.2.8.1.6.3.4 When a specific concentration limit (SCL) is assigned to a substance following its entry in Table A of Chapter 3.2 or in a special provision, this limit shall be used instead of the generic concentration limits (GCL).

2.2.8.1.6.3.5 For this purpose, the summation formula for each step of the calculation method shall be adapted. This means that, where applicable, the generic concentration limit shall be substituted by the specific concentration limit assigned to the substance(s) (SCL_i), and the adapted formula is a weighted average of the different concentration limits assigned to the different substances in the mixture:

$$\frac{PGx_1}{GCL} + \frac{PGx_2}{SCL_2} + \dots + \frac{PGx_i}{SCL_i} \geq 1$$

Where:

PGx_i = concentration of substance 1, 2 ...i in the mixture, assigned to packing group x (I, II or III)

GCL = generic concentration limit

SCL_i = specific concentration limit assigned to substance i

The criterion for a packing group is fulfilled when the result of the calculation is ≥ 1 . The generic concentration limits to be used for the evaluation in each step of the calculation method are those found in Figure 2.2.8.1.6.3.

Examples for the application of the above formula can be found in the note below.

NOTE: Examples for the application of the above formula

Example 1: A mixture contains one corrosive substance in a concentration of 5 % assigned to packing group I without a specific concentration limit:

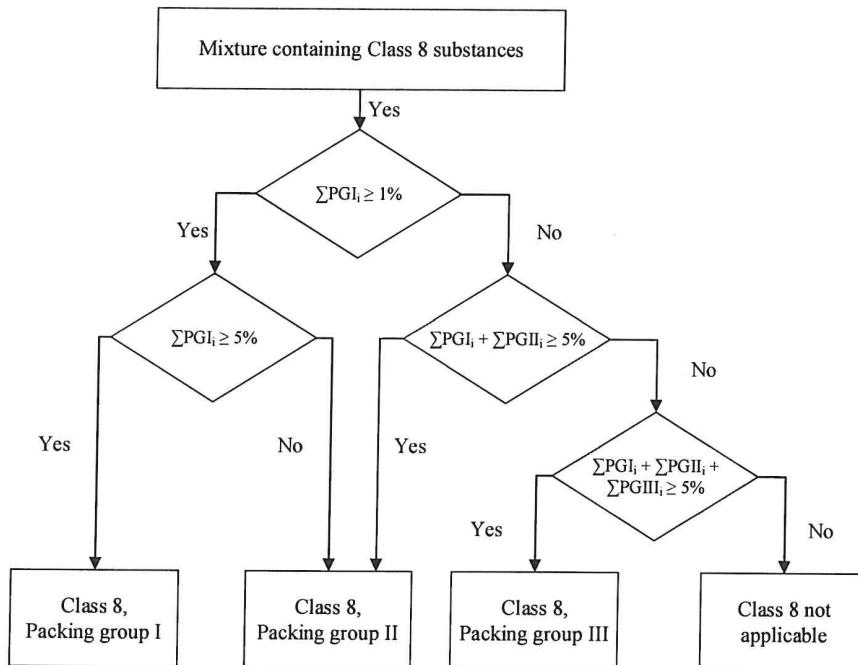
Calculation for packing group I: $\frac{5}{5 \text{ (GCL)}} = 1 \rightarrow \text{assign to Class 8, packing group I.}$

Example 2: A mixture contains three substances corrosive to skin; two of them (A and B) have specific concentration limits; for the third one (C) the generic concentration limit applies. The rest of the mixture needs not to be taken into consideration:

Substance X in the mixture and its packing group assignment within Class 8	Concentration (conc) in the mixture in %	Specific concentration limit (SCL) for packing group I	Specific concentration limit (SCL) for packing group II	Specific concentration limit (SCL) for packing group III
A, assigned to packing group I	3	30 %	none	none
B, assigned to packing group I	2	20 %	10 %	none
C, assigned to packing group III	10	none	none	none

Calculation for packing group I: $\frac{3 \text{ (conc A)}}{30 \text{ (SCL PG I)}} + \frac{2 \text{ (conc B)}}{20 \text{ (SCL PG I)}} = 0.2 < 1$

The criterion for packing group I is not fulfilled.


Calculation for packing group II: $\frac{3 \text{ (conc A)}}{5 \text{ (GCL PG II)}} + \frac{2 \text{ (conc B)}}{10 \text{ (SCL PG II)}} = 0.8 < 1$

The criterion for packing group II is not fulfilled.

Calculation for packing group III: $\frac{3 \text{ (conc A)}}{5 \text{ (GCL PG III)}} + \frac{2 \text{ (conc B)}}{5 \text{ (GCL PG III)}} + \frac{10 \text{ (conc C)}}{5 \text{ (GCL PG III)}} = 3 \geq 1$

The criterion for packing group III is fulfilled, the mixture shall be assigned to Class 8, packing group III.

Figure 2.2.8.1.6.3: Calculation method

2.2.8.1.7 If substances of Class 8, as a result of admixtures, come into categories of risk different from those to which the substances mentioned by name in Table A of Chapter 3.2 belong, these mixtures or solutions shall be assigned to the entries to which they belong, on the basis of their actual degree of danger.

NOTE: For the classification of solutions and mixtures (such as preparations and wastes), see also 2.1.3.

2.2.8.1.8 On the basis of the criteria set out in paragraph 2.2.8.1.6, it may also be determined whether the nature of a solution or mixture mentioned by name or containing a substance mentioned by name is such that the solution or mixture is not subject to the provisions for this class.

NOTE: UN No. 1910 calcium oxide and UN No. 2812 sodium aluminate, listed in the UN Model Regulations, are not subject to the provisions of ADR.

2.2.8.2 Substances not accepted for carriage

2.2.8.2.1 Chemically unstable substances of Class 8 shall not be accepted for carriage unless the necessary precautions have been taken to prevent the possibility of a dangerous decomposition or polymerization under normal conditions of carriage. For the precautions necessary to prevent polymerization, see special provision 386 of Chapter 3.3. To this end particular care shall be taken to ensure that receptacles and tanks do not contain any substances liable to promote these reactions.

2.2.8.2.2 The following substances shall not be accepted for carriage:

- UN No. 1798 NITROHYDROCHLORIC ACID;
- Chemically unstable mixtures of spent sulphuric acid;
- Chemically unstable mixtures of nitrating acid or mixtures of residual sulphuric and nitric acids, not denitrated;
- Perchloric acid aqueous solution with more than 72 % pure acid, by mass, or mixtures of perchloric acid with any liquid other than water.

2.2.8.3

*List of collective entries***Corrosive substances without subsidiary risk and articles containing such substances**

Acid	inorganic	liquid C1	2584 ALKYSULPHONIC ACIDS, LIQUID with more than 5 % free sulphuric acid or 2584 ARYLSULPHONIC ACIDS, LIQUID with more than 5 % free sulphuric acid 2693 BISULPHITES, AQUEOUS SOLUTION, N.O.S. 2837 BISULPHATES, AQUEOUS SOLUTION 3264 CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S.
		solid C2	1740 HYDROGENDIFLUORIDES, SOLID, N.O.S. 2583 ALKYSULPHONIC ACIDS, SOLID with more than 5 % free sulphuric acid or 2583 ARYLSULPHONIC ACIDS, SOLID with more than 5 % free sulphuric acid 3260 CORROSIVE SOLID, ACIDIC, INORGANIC, N.O.S.
C1-C4	organic	liquid C3	2586 ALKYSULPHONIC ACIDS, LIQUID with not more than 5 % free sulphuric acid or 2586 ARYLSULPHONIC ACIDS, LIQUID with not more than 5 % free sulphuric acid 2987 CHLOROSILANES, CORROSIVE, N.O.S. 3145 ALKYLPHENOLS, LIQUID, N.O.S. (including C ₂ -C ₁₂ homologues) 3265 CORROSIVE LIQUID, ACIDIC, ORGANIC, N.O.S.
		solid C4	2430 ALKYLPHENOLS, SOLID, N.O.S. (including C ₂ -C ₁₂ homologues) 2585 ALKYSULPHONIC ACIDS, SOLID with not more than 5 % free sulphuric acid or 2585 ARYLSULPHONIC ACIDS, SOLID with not more than 5 % free sulphuric acid 3261 CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.
Basic	inorganic	liquid C5	1719 CAUSTIC ALKALI LIQUID, N.O.S. 2797 BATTERY FLUID, ALKALI 3266 CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S.
		solid C6	3262 CORROSIVE SOLID, BASIC, INORGANIC, N.O.S.
C5-C8	organic	liquid C7	2735 AMINES, LIQUID, CORROSIVE, N.O.S. or 2735 POLYAMINES, LIQUID, CORROSIVE, N.O.S. 3267 CORROSIVE LIQUID, BASIC, ORGANIC, N.O.S.
		solid C8	3259 AMINES, SOLID, CORROSIVE, N.O.S., or 3259 POLYAMINES, SOLID, CORROSIVE, N.O.S. 3263 CORROSIVE SOLID, BASIC, ORGANIC, N.O.S.
Other corrosive substances		liquid C9	1903 DISINFECTANT, LIQUID, CORROSIVE, N.O.S. 2801 DYE, LIQUID, CORROSIVE, N.O.S. or 2801 DYE INTERMEDIATE, LIQUID, CORROSIVE, N.O.S. 3066 PAINT (including paint, enamel, stain, shellac, varnish, polish, liquid filler and lacquer base) or 3066 PAINT RELATED MATERIAL (including paint thinning or reducing compound) 1760 CORROSIVE LIQUID, N.O.S.
		solid ^a C10	3147 DYE, SOLID, CORROSIVE, N.O.S. or 3147 DYE INTERMEDIATE, SOLID, CORROSIVE, N.O.S. 3244 SOLIDS CONTAINING CORROSIVE LIQUID, N.O.S. 1759 CORROSIVE SOLID, N.O.S.
Articles	C11		2794 BATTERIES, WET, FILLED WITH ACID, electric storage 2795 BATTERIES, WET, FILLED WITH ALKALI, electric storage 2800 BATTERIES, WET, NON-SPILLABLE, electric storage 3028 BATTERIES, DRY, CONTAINING POTASSIUM HYDROXIDE SOLID, electric storage 1774 FIRE EXTINGUISHER CHARGES, corrosive liquid 2028 BOMBS, SMOKE, NON-EXPLOSIVE with corrosive liquid, without initiating device 3477 FUEL CELL CARTRIDGES containing corrosive substances, or 3477 FUEL CELL CARTRIDGES CONTAINED IN EQUIPMENT, containing corrosive substances, or 3477 FUEL CELL CARTRIDGES PACKED WITH EQUIPMENT, containing corrosive substances 3547 ARTICLES CONTAINING CORROSIVE SUBSTANCE, N.O.S.

^a Mixtures of solids which are not subject to the provisions of ADR and of corrosive liquids may be carried under UN No. 3244 without being subject to the classification criteria of Class 8, provided there is no free liquid visible at the time the substance is loaded or at the time the packaging, container or transport unit is closed. Each packaging shall correspond to a design type which has passed the leakproofness test for Packing group II level.

Corrosive substances with subsidiary risk(s) and articles containing such substances

(cont'd)			
Flammable ^b CF	liquid	CF1	3470 PAINT, CORROSIVE, FLAMMABLE (including paint, enamel, stain, shellac, varnish, polish, liquid filler and lacquer base) or 3470 PAINT RELATED MATERIAL, CORROSIVE, FLAMMABLE (including paint thinning or reducing compound) 2734 AMINES, LIQUID, CORROSIVE, FLAMMABLE, N.O.S. or 2734 POLYAMINES, LIQUID, CORROSIVE, FLAMMABLE, N.O.S. 2986 CHLOROSILANES, CORROSIVE, FLAMMABLE, N.O.S. 2920 CORROSIVE LIQUID, FLAMMABLE, N.O.S.
	solid	CF2	2921 CORROSIVE SOLID, FLAMMABLE, N.O.S.
Self-heating CS	liquid	CS1	3301 CORROSIVE LIQUID, SELF-HEATING, N.O.S.
	solid	CS2	3095 CORROSIVE SOLID, SELF-HEATING, N.O.S.
Water-reactive CW	liquid ^b	CW1	3094 CORROSIVE LIQUID, WATER-REACTIVE, N.O.S.
	solid	CW2	3096 CORROSIVE SOLID, WATER-REACTIVE, N.O.S.
Oxidizing CO	liquid	CO1	3093 CORROSIVE LIQUID, OXIDIZING, N.O.S.
	solid	CO2	3084 CORROSIVE SOLID, OXIDIZING, N.O.S.
Toxic ^d CT	liquid ^c	CT1	3471 HYDROGENFLUORIDES SOLUTION, N.O.S. 2922 CORROSIVE LIQUID, TOXIC, N.O.S.
	solid ^e	CT2	2923 CORROSIVE SOLID, TOXIC, N.O.S.
	articles	CT3	3506 MERCURY CONTAINED IN MANUFACTURED ARTICLES
Flammable, liquid, toxic ^d		CFT	No collective entry with this classification code available; if need be, classification under a collective entry with a classification code to be determined according to table of precedence of hazard in 2.1.3.10.
Oxidizing, toxic ^{d, e}		COT	No collective entry with this classification code available; if need be, classification under a collective entry with a classification code to be determined according to table of precedence of hazard in 2.1.3.10.

^b Chlorosilanes which, in contact with water or moist air, emit flammable gases, are substances of Class 4.3.

^c Chloroformates having predominantly toxic properties are substances of Class 6.1.

^d Corrosive substances which are highly toxic by inhalation, as defined in 2.2.61.1.4 to 2.2.61.1.9 are substances of Class 6.1.

^e UN No. 2505 AMMONIUM FLUORIDE, UN No. 1812 POTASSIUM FLUORIDE, SOLID, UN No. 1690 SODIUM FLUORIDE, SOLID, UN No. 2674 SODIUM FLUOROSILICATE, UN No. 2856 FLUOROSILICATES, N.O.S., UN No. 3415 SODIUM FLUORIDE SOLUTION and UN No. 3422 POTASSIUM FLUORIDE SOLUTION are substances of Class 6.1.

2.2.9 Class 9 Miscellaneous dangerous substances and articles**2.2.9.1 Criteria**

2.2.9.1.1 The heading of Class 9 covers substances and articles which, during carriage, present a danger not covered by the heading of other classes.

2.2.9.1.2 The substances and articles of Class 9 are subdivided as follows:

M1 Substances which, on inhalation as fine dust, may endanger health;

M2 Substances and articles which, in the event of fire, may form dioxins;

M3 Substances evolving flammable vapour;

M4 Lithium batteries and sodium ion batteries;

M5 Life-saving appliances;

M6-M8 Environmentally hazardous substances:

M6 Pollutant to the aquatic environment, liquid;

M7 Pollutant to the aquatic environment, solid;

M8 Genetically modified microorganisms and organisms;

M9-M10 Elevated temperature substances:

M9 Liquid;

M10 Solid;

M11 Other substances and articles presenting a danger during carriage, but not meeting the definitions of another class.

2.2.9.1.3 Definitions and classification

Substances and articles classified in Class 9 are listed in Table A of Chapter 3.2. The assignment of substances and articles not mentioned by name in Table A of Chapter 3.2 to the relevant entry of that Table or of sub-section 2.2.9.3 shall be done in accordance with 2.2.9.1.4 to 2.2.9.1.8, 2.2.9.1.10, 2.2.9.1.11, 2.2.9.1.13 and 2.2.9.1.14 below.

2.2.9.1.4 Substances which, on inhalation as fine dust, may endanger health

Substances which, on inhalation as fine dust, may endanger health include asbestos and mixtures containing asbestos.

2.2.9.1.5 Substances and articles which, in the event of fire, may form dioxins

Substances and articles which, in the event of fire, may form dioxins include polychlorinated biphenyls (PCBs) and terphenyls (PCTs) and polyhalogenated biphenyls and terphenyls and mixtures containing these substances, as well as articles such as transformers, condensers and articles containing those substances or mixtures.

NOTE: Mixtures with a PCB or PCT content of not more than 50 mg/kg are not subject to the provisions of ADR.

2.2.9.1.6 Substances evolving flammable vapour

Substances evolving flammable vapour include polymers containing flammable liquids with a flash-point not exceeding 55 °C.

2.2.9.1.7 *Lithium batteries and sodium ion batteries*2.2.9.1.7.1 *Lithium batteries*

Lithium batteries shall meet the following requirements, except when otherwise provided for in ADR (e.g. for prototype batteries and small production runs under special provision 310 or damaged batteries under special provision 376).

NOTE: For UN No. 3536 LITHIUM BATTERIES INSTALLED IN CARGO TRANSPORT UNIT, see special provision 389 in Chapter 3.3.

Cells and batteries, cells and batteries contained in equipment, or cells and batteries packed with equipment, containing lithium in any form shall be assigned to UN Nos. 3090, 3091, 3480 or 3481 as appropriate. They may be carried under these entries if they meet the following provisions:

(a) Each cell or battery is of the type proved to meet the requirements of each test of the *Manual of Tests and Criteria*, Part III, sub-section 38.3;

NOTE: Batteries shall be of a type proved to meet the testing requirements of the "Manual of Tests and Criteria", part III, sub-section 38.3, irrespective of whether the cells of which they are composed are of a tested type.

(b) Each cell and battery incorporates a safety venting device or is designed to preclude a violent rupture under normal conditions of carriage;

(c) Each cell and battery is equipped with an effective means of preventing external short circuits;

(d) Each battery containing cells or series of cells connected in parallel is equipped with effective means as necessary to prevent dangerous reverse current flow (e.g., diodes, fuses, etc.);

(e) Cells and batteries shall be manufactured under a quality management programme that includes:

- (i) A description of the organizational structure and responsibilities of personnel with regard to design and product quality;
- (ii) The relevant inspection and test, quality control, quality assurance, and process operation instructions that will be used;
- (iii) Process controls that should include relevant activities to prevent and detect internal short circuit failure during manufacture of cells;
- (iv) Quality records, such as inspection reports, test data, calibration data and certificates. Test data shall be kept and made available to the competent authority upon request;
- (v) Management reviews to ensure the effective operation of the quality management programme;
- (vi) A process for control of documents and their revision;
- (vii) A means for control of cells or batteries that are not conforming to the type tested as mentioned in (a) above;
- (viii) Training programmes and qualification procedures for relevant personnel; and
- (ix) Procedures to ensure that there is no damage to the final product.

NOTE: In house quality management programmes may be accepted. Third party certification is not required, but the procedures listed in (i) to (ix) above shall be properly recorded and traceable. A copy of the quality management programme shall be made available to the competent authority upon request.

(f) Lithium batteries, containing both primary lithium metal cells and rechargeable lithium ion cells, that are not designed to be externally charged (see special provision 387 of Chapter 3.3) shall meet the following conditions:

- (i) The rechargeable lithium ion cells can only be charged from the primary lithium metal cells;
- (ii) Overcharge of the rechargeable lithium ion cells is precluded by design;
- (iii) The battery has been tested as a lithium primary battery;
- (iv) Component cells of the battery shall be of a type proved to meet the respective testing requirements of the *Manual of Tests and Criteria*, part III, sub-section 38.3;

(g) Except for button cells installed in equipment (including circuit boards), manufacturers and subsequent distributors of cells or batteries manufactured after 30 June 2003 shall make available the test summary as specified in the *Manual of Tests and Criteria*, Part III, sub-section 38.3, paragraph 38.3.5.

NOTE: *The term "make available" means that manufacturers and subsequent distributors ensure that the test summary is accessible so that the consignor or other persons in the supply chain can confirm compliance.*

Lithium batteries are not subject to the provisions of ADR if they meet the requirements of special provision 188 of Chapter 3.3.

2.2.9.1.7.2 Sodium ion batteries

Cells and batteries, cells and batteries contained in equipment, or cells and batteries packed with equipment containing sodium ion, which are a rechargeable electrochemical system where the positive and negative electrode are both intercalation or insertion compounds, constructed with no metallic sodium (or sodium alloy) in either electrode and with an organic non aqueous compound as electrolyte, shall be assigned to UN Nos. 3551 or 3552, as appropriate.

NOTE: *Intercalated sodium exists in an ionic or quasi-atomic form in the lattice of the electrode material.*

They may be carried under these entries if they meet the following provisions:

- (a) Each cell or battery is of the type proved to meet the requirements of applicable tests of the *Manual of Tests and Criteria*, Part III, sub-section 38.3;

NOTE: *Batteries shall be of a type proved to meet the testing requirements of the *Manual of Tests and Criteria*, Part III, sub-section 38.3, irrespective of whether the cells of which they are composed are of a tested type.*

- (b) Each cell and battery incorporates a safety venting device or is designed to preclude a violent rupture under conditions normally encountered during carriage;
- (c) Each cell and battery is equipped with an effective means of preventing external short circuits;
- (d) Each battery containing cells or a series of cells connected in parallel is equipped with effective means as necessary to prevent dangerous reverse current flow (e.g. diodes, fuses, etc.);
- (e) Cells and batteries shall be manufactured under a quality management programme as prescribed under 2.2.9.1.7.1 (e) (i) to (ix);
- (f) Manufacturers and subsequent distributors of cells or batteries shall make available the test summary as specified in the *Manual of Tests and Criteria*, Part III, sub-section 38.3, paragraph 38.3.5.

NOTE: *The term "make available" means that manufacturers and subsequent distributors ensure that the test summary is accessible so that the consignor or other persons in the supply chain can confirm compliance.*

Sodium ion batteries are not subject to the provisions of ADR if they meet the requirements of special provisions 188 or 400 of Chapter 3.3.

2.2.9.1.8 *Life-saving appliances*

Life-saving appliances include life-saving appliances and motor vehicle components which meet the descriptions of special provisions 235 or 296 of Chapter 3.3.

2.2.9.1.9 *Environmentally hazardous substances*

(Deleted)

2.2.9.1.10 *Pollutants to the aquatic environment: environmentally hazardous substances (aquatic environment)*

2.2.9.1.10.1 General definitions

Environmentally hazardous substances include, *inter alia*, liquid or solid substances pollutant to the aquatic environment and solutions and mixtures of such substances (such as preparations and wastes).

For the purposes of 2.2.9.1.10, "substance" means chemical elements and their compounds in the natural state or obtained by any production process, including any additive necessary to preserve the stability of the product and any impurities deriving from the process used, but excluding any solvent which may be separated without affecting the stability of the substance or changing its composition.

2.2.9.1.10.1.2 The aquatic environment may be considered in terms of the aquatic organisms that live in the water, and the aquatic ecosystem of which they are part¹¹. The basis, therefore, of the identification of hazard is the aquatic toxicity of the substance or mixture, although this may be modified by further information on the degradation and bioaccumulation behaviour.

2.2.9.1.10.1.3 While the following classification procedure is intended to apply to all substances and mixtures, it is recognised that in some cases, e.g. metals or poorly soluble inorganic compounds, special guidance will be necessary¹².

2.2.9.1.10.1.4 The following definitions apply for acronyms or terms used in this section:

- BCF: Bioconcentration Factor;
- BOD: Biochemical Oxygen Demand;
- COD: Chemical Oxygen Demand;
- GLP: Good Laboratory Practices;
- EC_x: the concentration associated with x % response;
- EC₅₀: the effective concentration of substance that causes 50 % of the maximum response;
- ErC₅₀: EC₅₀ in terms of reduction of growth;
- Kow: octanol/water partition coefficient;
- LC₅₀ (50 % lethal concentration): the concentration of a substance in water which causes the death of 50 % (one half) in a group of test animals;
- L(E)C₅₀: LC₅₀ or EC₅₀;
- NOEC (No Observed Effect Concentration): the test concentration immediately below the lowest tested concentration with statistically significant adverse effect. The NOEC has no statistically significant adverse effect compared to the control;
- OECD Test Guidelines: Test guidelines published by the Organization for Economic Cooperation and Development (OECD).

¹¹ This does not address aquatic pollutants for which there may be a need to consider effects beyond the aquatic environment such as the impacts on human health etc.

¹² This can be found in Annex 10 of the GHS.

2.2.9.1.10.2 Definitions and data requirements

2.2.9.1.10.2.1 The basic elements for classification of environmentally hazardous substances (aquatic environment) are:

- (a) Acute aquatic toxicity;
- (b) Chronic aquatic toxicity;
- (c) Potential for or actual bioaccumulation; and
- (d) Degradation (biotic or abiotic) for organic chemicals.

2.2.9.1.10.2.2 While data from internationally harmonised test methods are preferred, in practice, data from national methods may also be used where they are considered as equivalent. In general, it has been agreed that freshwater and marine species toxicity data can be considered as equivalent data and are preferably to be derived using OECD Test Guidelines or equivalent according to the principles of Good Laboratory Practices (GLP). Where such data are not available, classification shall be based on the best available data.

2.2.9.1.10.2.3 *Acute aquatic toxicity* means the intrinsic property of a substance to be injurious to an organism in a short-term aquatic exposure to that substance.

Acute (short-term) hazard, for classification purposes, means the hazard of a chemical caused by its acute toxicity to an organism during short-term aquatic exposure to that chemical.

Acute aquatic toxicity shall normally be determined using a fish 96 hour LC₅₀ (OECD Test Guideline 203 or equivalent), a crustacea species 48 hour EC₅₀ (OECD Test Guideline 202 or equivalent) and/or an algal species 72 or 96 hour EC₅₀ (OECD Test Guideline 201 or equivalent). These species are considered as surrogate for all aquatic organisms and data on other species such as Lemma may also be considered if the test methodology is suitable.

2.2.9.1.10.2.4 *Chronic aquatic toxicity* means the intrinsic property of a substance to cause adverse effects to aquatic organisms during aquatic exposures which are determined in relation to the life-cycle of the organism.

Long-term hazard, for classification purposes, means the hazard of a chemical caused by its chronic toxicity following long-term exposure in the aquatic environment.

Chronic toxicity data are less available than acute data and the range of testing procedures less standardised. Data generated according to the OECD Test Guidelines 210 (Fish Early Life Stage) or 211 (Daphnia Reproduction) and 201 (Algal Growth Inhibition) may be accepted. Other validated and internationally accepted tests may also be used. The NOECs or other equivalent EC_x shall be used.

2.2.9.1.10.2.5 *Bioaccumulation* means net result of uptake, transformation and elimination of a substance in an organism due to all routes of exposure (i.e. air, water, sediment/soil and food).

The potential for bioaccumulation shall normally be determined by using the octanol/water partition coefficient, usually reported as a log K_{ow} determined according to OECD Test Guideline 107 or 117. While this represents a potential to bioaccumulate, an experimentally determined Bioconcentration Factor (BCF) provides a better measure and shall be used in preference when available. A BCF shall be determined according to OECD Test Guideline 107, 117 or 123.

2.2.9.1.10.2.6 *Degradation* means the decomposition of organic molecules to smaller molecules and eventually to carbon dioxide, water and salts.

Environmental degradation may be biotic or abiotic (e.g. hydrolysis) and the criteria used reflect this fact. Ready biodegradation is most easily defined using the biodegradability tests (A-F) of OECD Test Guideline 301. A pass level in these tests may be considered as indicative of rapid degradation in most environments. These are freshwater tests and thus the use of the results from OECD Test Guideline 306, which is more suitable for marine environments, has also been included. Where such data are not available, a BOD₅(5 days)/COD ratio ≥ 0.5 is considered as indicative of rapid degradation.

Abiotic degradation such as hydrolysis, primary degradation, both abiotic and biotic, degradation in non-aquatic media and proven rapid degradation in the environment may all be considered in defining rapid degradability¹³.

Substances are considered rapidly degradable in the environment if the following criteria are met:

- (a) In 28-day ready biodegradation studies, the following levels of degradation are achieved:
 - (i) Tests based on dissolved organic carbon: 70 %;
 - (ii) Tests based on oxygen depletion or carbon dioxide generation: 60 % of theoretical maxima;

These levels of biodegradation shall be achieved within 10 days of the start of degradation which point is taken as the time when 10 % of the substance has been degraded, unless the substance is identified as a complex, multi-component substance with structurally similar constituents. In this case, and where there is sufficient justification, the 10-day window condition may be waived and the pass level applied at 28 days¹⁴; or

- (b) In those cases where only BOD and COD data are available, when the ratio of BOD₅/COD is ≥ 0.5 ; or
- (c) If other convincing scientific evidence is available to demonstrate that the substance can be degraded (biotically and/or abiotically) in the aquatic environment to a level above 70 % within a 28 day period.

2.2.9.1.10.3 Substance classification categories and criteria

2.2.9.1.10.3.1 Substances shall be classified as "environmentally hazardous substances (aquatic environment)", if they satisfy the criteria for Acute 1, Chronic 1 or Chronic 2, according to Table 2.2.9.1.10.3.1. These criteria describe in detail the classification categories. They are diagrammatically summarized in Table 2.2.9.1.10.3.2.

¹³ Special guidance on data interpretation is provided in Chapter 4.1 and Annex 9 of the GHS.

¹⁴ See Chapter 4.1 and Annex 9, paragraph A9.4.2.2.3 of the GHS.

Table 2.2.9.1.10.3.1: Categories for substances hazardous to the aquatic environment (see Note 1)

(a) Acute (short-term) aquatic hazard

<u>Category Acute 1:</u> (see Note 2)	
96 h LC ₅₀ (for fish)	≤ 1 mg/l and/or
48 h EC ₅₀ (for crustacea)	≤ 1 mg/l and/or
72 or 96 h ErC ₅₀ (for algae or other aquatic plants)	≤ 1 mg/l (see Note 3)

(b) Long-term aquatic hazard (see also Figure 2.2.9.1.10.3.1)

(i) Non-rapidly degradable substances (see note 4) for which there are adequate chronic toxicity data available

<u>Category Chronic 1:</u> (see Note 2)	
Chronic NOEC or EC _x (for fish)	≤ 0.1 mg/l and/or
Chronic NOEC or EC _x (for crustacea)	≤ 0.1 mg/l and/or
Chronic NOEC or EC _x (for algae or other aquatic plants)	≤ 0.1 mg/l
<u>Category Chronic 2:</u>	
Chronic NOEC or EC _x (for fish)	≤ 1 mg/l and/or
Chronic NOEC or EC _x (for crustacea)	≤ 1 mg/l and/or
Chronic NOEC or EC _x (for algae or other aquatic plants)	≤ 1 mg/l

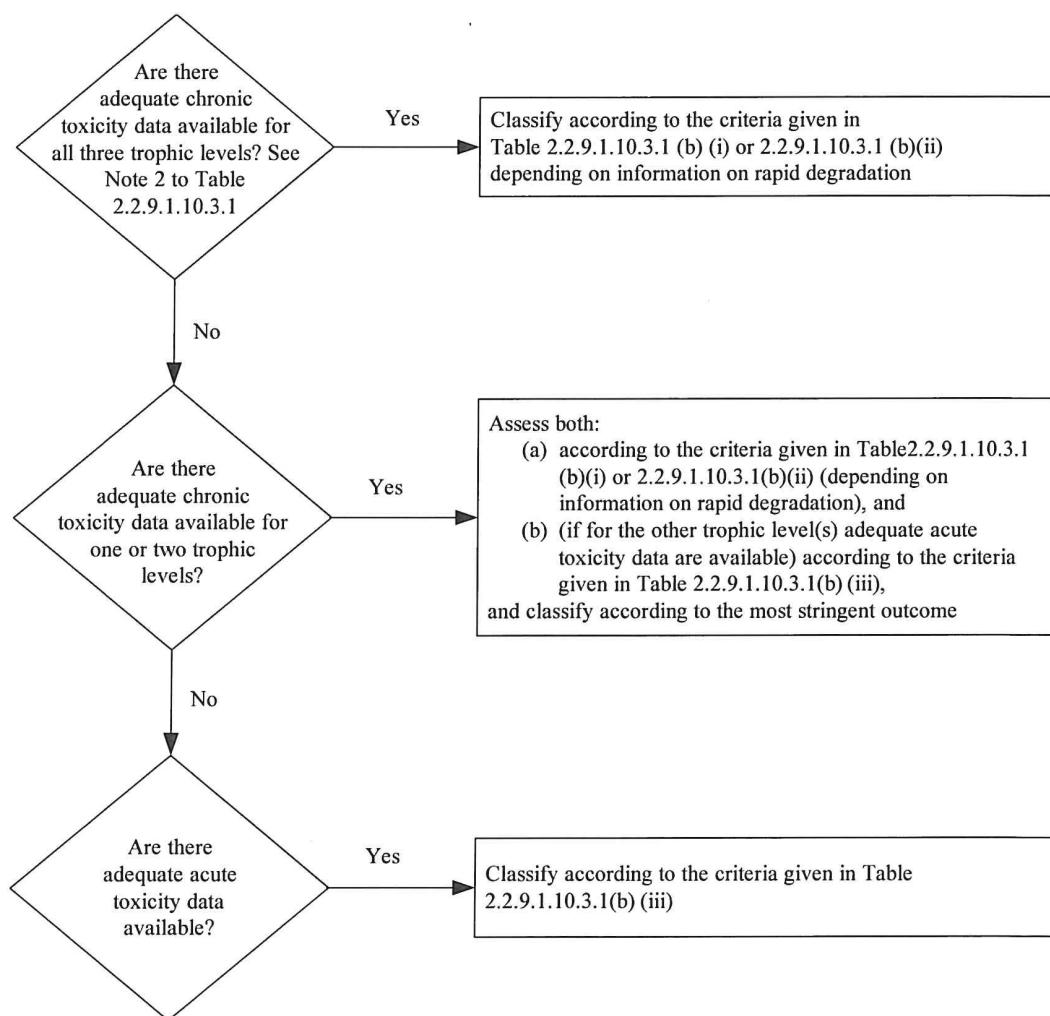
(ii) Rapidly degradable substances for which there are adequate chronic toxicity data available

<u>Category Chronic 1:</u> (see Note 2)	
Chronic NOEC or EC _x (for fish)	≤ 0.01 mg/l and/or
Chronic NOEC or EC _x (for crustacea)	≤ 0.01 mg/l and/or
Chronic NOEC or EC _x (for algae or other aquatic plants)	≤ 0.01 mg/l
<u>Category Chronic 2:</u>	
Chronic NOEC or EC _x (for fish)	≤ 0.1 mg/l and/or
Chronic NOEC or EC _x (for crustacea)	≤ 0.1 mg/l and/or
Chronic NOEC or EC _x (for algae or other aquatic plants)	≤ 0.1 mg/l

(iii) Substances for which adequate chronic toxicity data are not available

<u>Category Chronic 1:</u> (see Note 2)	
96 h LC ₅₀ (for fish)	≤ 1 mg/l and/or
48 h EC ₅₀ (for crustacea)	≤ 1 mg/l and/or
72 or 96 h ErC ₅₀ (for algae or other aquatic plants)	≤ 1 mg/l (see Note 3)
and the substance is not rapidly degradable and/or the experimentally determined BCF is ≥ 500 (or, if absent the log K _{ow} ≥ 4) (see Notes 4 and 5).	
<u>Category Chronic 2:</u>	
96 h LC ₅₀ (for fish)	>1 but ≤ 10 mg/l and/or
48 h EC ₅₀ (for crustacea)	>1 but ≤ 10 mg/l and/or
72 or 96 h ErC ₅₀ (for algae or other aquatic plants)	>1 but ≤ 10 mg/l (see Note 3)
and the substance is not rapidly degradable and/or the experimentally determined BCF is ≥ 500 (or, if absent the log K _{ow} ≥ 4) (see Notes 4 and 5).	

NOTE 1: The organisms fish, crustacea and algae are tested as surrogate species covering a range of trophic levels and taxa, and the test methods are highly standardized. Data on other organisms may also be considered, however, provided they represent equivalent species and test endpoints.


NOTE 2: When classifying substances as Acute 1 and/or Chronic 1 it is necessary at the same time to indicate an appropriate M factor (see 2.2.9.1.10.4.6.4) to apply the summation method.

NOTE 3: Where the algal toxicity ErC₅₀ (= EC₅₀ (growth rate)) falls more than 100 times below the next most sensitive species and results in a classification based solely on this effect, consideration shall be given to whether this toxicity is representative of the toxicity to aquatic plants. Where it can be shown that this is not the case, professional judgment shall be used in deciding if classification shall be applied. Classification shall be based on the ErC₅₀. In circumstances where the basis of the EC₅₀ is not specified and no ErC₅₀ is recorded, classification shall be based on the lowest EC₅₀ available.

NOTE 4: Lack of rapid degradability is based on either a lack of ready biodegradability or other evidence of lack of rapid degradation. When no useful data on degradability are available, either experimentally determined or estimated data, the substance shall be regarded as not rapidly degradable.

NOTE 5: Potential to bioaccumulate, based on an experimentally derived $BCF \geq 500$ or, if absent, a $\log K_{ow} \geq 4$ provided $\log K_{ow}$ is an appropriate descriptor for the bioaccumulation potential of the substance. Measured $\log K_{ow}$ values take precedence over estimated values and measured BCF values take precedence over $\log K_{ow}$ values.

Figure 2.2.9.1.10.3.1: Categories for substances long-term hazardous to the aquatic environment

2.2.9.1.10.3.2 The classification scheme in Table 2.2.9.1.10.3.2 below summarizes the classification criteria for substances.

Table 2.2.9.1.10.3.2: Classification scheme for substances hazardous to the aquatic environment

Classification categories			
Acute hazard (see Note 1)	Long-term hazard (see Note 2)		
	Adequate chronic toxicity data available		Adequate chronic toxicity data not available (see Note 1)
	Non-rapidly degradable substances (see Note 3)	Rapidly degradable substances (see Note 3)	
Category: Acute 1	Category: Chronic 1	Category: Chronic 1	Category: Chronic 1
L(E)C ₅₀ ≤ 1.00	NOEC or EC _x ≤ 0.1	NOEC or EC _x ≤ 0.01	L(E)C ₅₀ ≤ 1.00 and lack of rapid degradability and/or BCF ≥ 500 or, if absent log K _{ow} ≥ 4
	Category: Chronic 2	Category: Chronic 2	Category: Chronic 2
	0.1 < NOEC or EC _x ≤ 1	0.01 < NOEC or EC _x ≤ 0.1	1.00 < L(E)C ₅₀ ≤ 10.0 and lack of rapid degradability and/or BCF ≥ 500 or, if absent log K _{ow} ≥ 4

NOTE 1: Acute toxicity band based on L(E)C₅₀ values in mg/l for fish, crustacea and/or algae or other aquatic plants (or Quantitative Structure Activity Relationships (QSAR) estimation if no experimental data¹⁵).

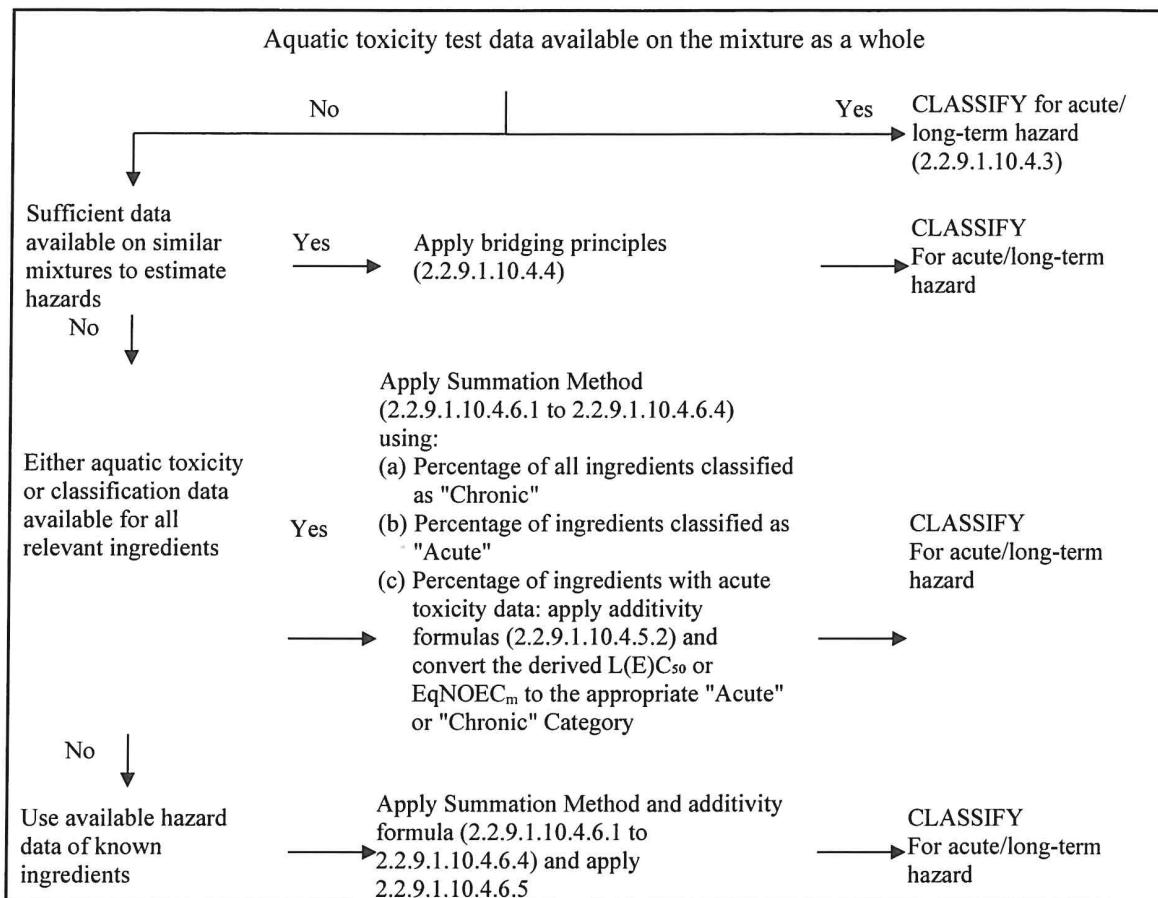
NOTE 2: Substances are classified in the various chronic categories unless there are adequate chronic toxicity data available for all three trophic levels above the water solubility or above 1 mg/l. ("Adequate" means that the data sufficiently cover the endpoint of concern. Generally this would mean measured test data, but in order to avoid unnecessary testing it can on a case by case basis also be estimated data, e.g. (Q)SAR, or for obvious cases expert judgment).

NOTE 3: Chronic toxicity band based on NOEC or equivalent EC_x values in mg/l for fish or crustacea or other recognized measures for chronic toxicity.

2.2.9.1.10.4 Mixtures classification categories and criteria

2.2.9.1.10.4.1 The classification system for mixtures covers the classification categories which are used for substances, meaning categories Acute 1 and Chronic 1 and 2. In order to make use of all available data for purposes of classifying the aquatic environmental hazards of the mixture, the following assumption is made and is applied where appropriate:

The "relevant ingredients" of a mixture are those which are present in a concentration equal to or greater than 0.1 % (by mass) for ingredients classified as Acute and/or Chronic 1 and equal to or greater than 1 % for other ingredients, unless there is a presumption (e.g. in the case of highly toxic ingredients) that an ingredient present at less than 0.1 % can still be relevant for classifying the mixture for aquatic environmental hazards.


2.2.9.1.10.4.2 The approach for classification of aquatic environmental hazards is tiered, and is dependent upon the type of information available for the mixture itself and for its ingredients. Elements of the tiered approach include:

- Classification based on tested mixtures;
- Classification based on bridging principles;
- The use of "summation of classified ingredients" and/or an "additivity formula".

Figure 2.2.9.1.10.4.2 below outlines the process to be followed.

¹⁵ Special guidance is provided in Chapter 4.1, paragraph 4.1.2.13 and Annex 9, Section A9.6 of the GHS.

Figure 2.2.9.1.10.4.2: Tiered approach to classification of mixtures for acute and long-term aquatic environmental hazards

2.2.9.1.10.4.3 Classification of mixtures when toxicity data are available for the complete mixture

2.2.9.1.10.4.3.1 When the mixture as a whole has been tested to determine its aquatic toxicity, this information shall be used for classifying the mixture according to the criteria that have been agreed for substances. The classification is normally based on the data for fish, crustacea and algae/plants (see 2.2.9.1.10.2.3 and 2.2.9.1.10.2.4). When adequate acute or chronic data for the mixture as a whole are lacking, "bridging principles" or "summation method" shall be applied (see 2.2.9.1.10.4.4 to 2.2.9.1.10.4.6).

2.2.9.1.10.4.3.2 The long-term hazard classification of mixtures requires additional information on degradability and in certain cases bioaccumulation. There are no degradability and bioaccumulation data for mixtures as a whole. Degradability and bioaccumulation tests for mixtures are not used as they are usually difficult to interpret, and such tests may be meaningful only for single substances.

2.2.9.1.10.4.3.3 Classification for category Acute 1

(a) When there are adequate acute toxicity test data (LC_{50} or EC_{50}) available for the mixture as a whole showing $L(E)C_{50} \leq 1 \text{ mg/l}$:

Classify the mixture as Acute 1 in accordance with Table 2.2.9.1.10.3.1 (a);

(b) When there are acute toxicity test data ($LC_{50}(s)$ or $EC_{50}(s)$) available for the mixture as a whole showing $L(E)C_{50}(s) > 1 \text{ mg/l}$, or above the water solubility:

No need to classify for acute hazard under ADR.

2.2.9.1.10.4.3.4 Classification for categories Chronic 1 and 2

(a) When there are adequate chronic toxicity data (EC_x or NOEC) available for the mixture as a whole showing EC_x or NOEC of the tested mixture $\leq 1\text{mg/l}$:

(i) Classify the mixture as Chronic 1 or 2 in accordance with Table 2.2.9.1.10.3.1 (b) (ii) (rapidly degradable) if the available information allows the conclusion that all relevant ingredients of the mixture are rapidly degradable;

NOTE: In this situation, when EC_x or NOEC of the tested mixture $> 0.1\text{ mg/l}$, there is no need to classify for long-term hazard under ADR.

(ii) Classify the mixture as Chronic 1 or 2 in all other cases in accordance with Table 2.2.9.1.10.3.1 (b) (i) (non-rapidly degradable);

(b) When there are adequate chronic toxicity data (EC_x or NOEC) available for the mixture as a whole showing EC_{x(s)} or NOEC(s) of the tested mixture $> 1\text{mg/l}$ or above the water solubility:

No need to classify for long-term hazard under ADR.

2.2.9.1.10.4.4 Classification of mixtures when toxicity data are not available for the complete mixture: bridging principles

2.2.9.1.10.4.4.1 Where the mixture itself has not been tested to determine its aquatic environmental hazard, but there are sufficient data on the individual ingredients and similar tested mixtures to adequately characterise the hazards of the mixture, these data shall be used in accordance with the following agreed bridging rules. This ensures that the classification process uses the available data to the greatest extent possible in characterising the hazards of the mixture without the necessity for additional testing in animals.

2.2.9.1.10.4.4.2 Dilution

Where a new mixture is formed by diluting a tested mixture or a substance with a diluent which has an equivalent or lower aquatic hazard classification than the least toxic original ingredient and which is not expected to affect the aquatic hazards of other ingredients, then the resulting mixture shall be classified as equivalent to the original tested mixture or substance. Alternatively, the method explained in 2.2.9.1.10.4.5 may be applied.

2.2.9.1.10.4.4.3 Batching

The aquatic hazard classification of a tested production batch of a mixture shall be assumed to be substantially equivalent to that of another untested production batch of the same commercial product when produced by or under the control of the same manufacturer, unless there is reason to believe there is significant variation such that the aquatic hazard classification of the untested batch has changed. If the latter occurs, new classification is necessary.

2.2.9.1.10.4.4.4 Concentration of mixtures which are classified with the most severe classification categories (Chronic 1 and Acute 1)

If a tested mixture is classified as Chronic 1 and/or Acute 1, and the ingredients of the mixture which are classified as Chronic 1 and/or Acute 1 are further concentrated, the more concentrated untested mixture shall be classified with the same classification category as the original tested mixture without additional testing.

2.2.9.1.10.4.4.5 Interpolation within one toxicity category

For three mixtures (A, B and C) with identical ingredients, where mixtures A and B have been tested and are in the same toxicity category, and where untested mixture C has the same toxicologically active ingredients as mixtures A and B but has concentrations of toxicologically active ingredients intermediate to the concentrations in mixtures A and B, then mixture C is assumed to be in the same category as A and B.

2.2.9.1.10.4.4.6 Substantially similar mixtures

Given the following:

- (a) Two mixtures:
 - (i) A + B;
 - (ii) C + B;
- (b) The concentration of ingredient B is essentially the same in both mixtures;
- (c) The concentration of ingredient A in mixture (i) equals that of ingredient C in mixture (ii);
- (d) Data on aquatic hazards for A and C are available and are substantially equivalent, i.e. they are in the same hazard category and are not expected to affect the aquatic toxicity of B.

If mixture (i) or (ii) is already classified based on test data, then the other mixture can be assigned the same hazard category.

2.2.9.1.10.4.5 Classification of mixtures when toxicity data are available for all ingredients or only for some ingredients of the mixture

2.2.9.1.10.4.5.1 The classification of a mixture shall be based on summation of the concentrations of its classified ingredients. The percentage of ingredients classified as "Acute" or "Chronic" will feed straight into the summation method. Details of the summation method are described in 2.2.9.1.10.4.6.1 to 2.2.9.1.10.4.6.4.

2.2.9.1.10.4.5.2 Mixtures may be made of a combination of both ingredients that are classified (as Acute 1 and/or Chronic 1, 2) and those for which adequate toxicity test data are available. When adequate toxicity data are available for more than one ingredient in the mixture, the combined toxicity of those ingredients shall be calculated using the following additivity formulas (a) or (b), depending on the nature of the toxicity data:

- (a) Based on acute aquatic toxicity:

$$\frac{\sum C_i}{L(E)C_{50m}} = \sum_n \frac{C_i}{L(E)C_{50i}}$$

where:

- C_i = concentration of ingredient i (mass percentage);
- $L(E)C_{50i}$ = LC_{50} or EC_{50} for ingredient i (mg/l);
- n = number of ingredients, and i is running from 1 to n;
- $L(E)C_{50m}$ = $L(E)C_{50}$ of the part of the mixture with test data;

The calculated toxicity shall be used to assign that portion of the mixture an acute hazard category which is then subsequently used in applying the summation method;

- (b) Based on chronic aquatic toxicity:

$$\frac{\sum C_i + \sum C_j}{EqNOEC_m} = \sum_n \frac{C_i}{NOEC_i} + \sum_n \frac{C_j}{0.1 \cdot NOEC_j}$$

where:

- C_i = concentration of ingredient i (mass percentage) covering the rapidly degradable ingredients;
- C_j = concentration of ingredient j (mass percentage) covering the non rapidly degradable ingredients;
- $NOEC_i$ = NOEC (or other recognized measures for chronic toxicity) for ingredient i covering the rapidly degradable ingredients, in mg/l;
- $NOEC_j$ = NOEC (or other recognized measures for chronic toxicity) for ingredient j covering the non-rapidly degradable ingredients, in mg/l;
- n = number of ingredients, and i and j are running from 1 to n;

EqNOEC_m = equivalent NOEC of the part of the mixture with test data;

The equivalent toxicity thus reflects the fact that non-rapidly degrading substances are classified one hazard category level more "severe" than rapidly degrading substances.

The calculated equivalent toxicity shall be used to assign that portion of the mixture a long-term hazard category, in accordance with the criteria for rapidly degradable substances (Table 2.2.9.1.10.3.1 (b) (ii)), which is then subsequently used in applying the summation method.

2.2.9.1.10.4.5.3 When applying the additivity formula for part of the mixture, it is preferable to calculate the toxicity of this part of the mixture using for each ingredient toxicity values that relate to the same taxonomic group (i.e. fish, crustacea or algae) and then to use the highest toxicity (lowest value) obtained (i.e. use the most sensitive of the three groups). However, when toxicity data for each ingredient are not available in the same taxonomic group, the toxicity value of each ingredient shall be selected in the same manner that toxicity values are selected for the classification of substances, i.e. the higher toxicity (from the most sensitive test organism) is used. The calculated acute and chronic toxicity shall then be used to classify this part of the mixture as Acute 1 and/or Chronic 1 or 2 using the same criteria described for substances.

2.2.9.1.10.4.5.4 If a mixture is classified in more than one way, the method yielding the more conservative result shall be used.

2.2.9.1.10.4.6 Summation method

2.2.9.1.10.4.6.1 Classification procedure

In general a more severe classification for mixtures overrides a less severe classification, e.g. a classification with Chronic 1 overrides a classification with Chronic 2. As a consequence the classification procedure is already completed if the results of the classification is Chronic 1. A more severe classification than Chronic 1 is not possible; therefore, it is not necessary to pursue the classification procedure further.

2.2.9.1.10.4.6.2 Classification for category Acute 1

2.2.9.1.10.4.6.2.1 First, all ingredients classified as Acute 1 are considered. If the sum of the concentrations (in %) of these ingredients is greater than or equal to 25 % the whole mixture shall be classified as Acute 1. If the result of the calculation is a classification of the mixture as Acute 1, the classification process is completed.

2.2.9.1.10.4.6.2.2 The classification of mixtures for acute hazards based on this summation of the concentrations of classified ingredients is summarized in Table 2.2.9.1.10.4.6.2.2 below.

Table 2.2.9.1.10.4.6.2.2: Classification of a mixture for acute hazards based on summation of the concentrations of classified ingredients

Sum of the concentrations (in %) of ingredients classified as:	Mixture classified as:
Acute 1 × M ^a ≥ 25 %	Acute 1

^a For explanation of the M factor, see 2.2.9.1.10.4.6.4.

2.2.9.1.10.4.6.3 Classification for categories Chronic 1 and 2

2.2.9.1.10.4.6.3.1 First, all ingredients classified as Chronic 1 are considered. If the sum of the concentrations (in %) of these ingredients is greater than or equal to 25 % the mixture shall be classified as Chronic 1. If the result of the calculation is a classification of the mixture as Chronic 1 the classification procedure is completed.

2.2.9.1.10.4.6.3.2 In cases where the mixture is not classified as Chronic 1, classification of the mixture as Chronic 2 is considered. A mixture shall be classified as Chronic 2 if 10 times the sum of the concentrations (in %) of all ingredients classified as Chronic 1 plus the sum of the concentrations (in %) of all ingredients classified as Chronic 2 is greater than or equal to 25 %. If the result of the calculation is classification of the mixture as Chronic 2, the classification process is completed.

2.2.9.1.10.4.6.3.3 The classification of mixtures for long-term hazards based on this summation of the concentrations of classified ingredients is summarized in Table 2.2.9.1.10.4.6.3.3 below.

Table 2.2.9.1.10.4.6.3.3: Classification of a mixture for long-term hazards based on summation of the concentrations of classified ingredients

Sum of the concentrations (in %) of ingredients classified as:	Mixture classified as:
Chronic 1 \times M ^a	$\geq 25\%$ Chronic 1
$(M \times 10 \times \text{Chronic 1}) + \text{Chronic 2}$	$\geq 25\%$ Chronic 2

^a For explanation of the Mfactor, see 2.2.9.1.10.4.6.4.

2.2.9.1.10.4.6.4 Mixtures with highly toxic ingredients

Acute 1 or Chronic 1 ingredients with acute toxicities well below 1 mg/l and/or chronic toxicities well below 0.1 mg/l (if non-rapidly degradable) and 0.01 mg/l (if rapidly degradable) may influence the toxicity of the mixture and are given increased weight in applying the summation method. When a mixture contains ingredients classified as acute or Chronic 1, the tiered approach described in 2.2.9.1.10.4.6.2 and 2.2.9.1.10.4.6.3 shall be applied using a weighted sum by multiplying the concentrations of Acute 1 and Chronic 1 ingredients by a factor, instead of merely adding up the percentages. This means that the concentration of "Acute 1" in the left column of Table 2.2.9.1.10.4.6.2.2 and the concentration of "Chronic 1" in the left column of Table 2.2.9.1.10.4.6.3 are multiplied by the appropriate multiplying factor. The multiplying factors to be applied to these ingredients are defined using the toxicity value, as summarised in Table 2.2.9.1.10.4.6.4 below. Therefore, in order to classify a mixture containing Acute 1 and/or Chronic 1 ingredients, the classifier needs to be informed of the value of the M factor in order to apply the summation method. Alternatively, the additivity formula (see 2.2.9.1.10.4.5.2) may be used when toxicity data are available for all highly toxic ingredients in the mixture and there is convincing evidence that all other ingredients, including those for which specific acute and/or chronic toxicity data are not available, are of low or no toxicity and do not significantly contribute to the environmental hazard of the mixture.

Table 2.2.9.1.10.4.6.4: Multiplying factors for highly toxic ingredients of mixtures

Acute toxicity	M factor	Chronic toxicity	M factor	
			NRD ^a ingredients	RD ^b ingredients
$L(E)C_{50} \leq 1$	1	$0.01 < NOEC \leq 0.1$	1	–
$0.01 < L(E)C_{50} \leq 0.1$	10	$0.001 < NOEC \leq 0.01$	10	1
$0.001 < L(E)C_{50} \leq 0.01$	100	$0.0001 < NOEC \leq 0.001$	100	10
$0.0001 < L(E)C_{50} \leq 0.001$	1 000	$0.00001 < NOEC \leq 0.0001$	1 000	100
$0.00001 < L(E)C_{50} \leq 0.0001$	10 000	$0.000001 < NOEC \leq 0.00001$	10 000	1 000
(continue in factor 10 intervals)		(continue in factor 10 intervals)		

^a Non-rapidly degradable.

^b Rapidly degradable.

2.2.9.1.10.4.6.5 Classification of mixtures with ingredients without any useable information

In the event that no useable information on acute and/or chronic aquatic toxicity is available for one or more relevant ingredients, it is concluded that the mixture cannot be attributed (a) definitive hazard category(ies). In this situation the mixture shall be classified based on the known ingredients only.

2.2.9.1.10.5 Substances or mixtures classified as environmentally hazardous substances (aquatic environment) on the basis of Regulation 1272/2008/EC³.

If data for classification according to the criteria of 2.2.9.1.10.3 and 2.2.9.1.10.4 are not available, a substance or mixture:

- (a) Shall be classified as an environmentally hazardous substance (aquatic environment) if it has to be assigned category(ies) Aquatic Acute 1, Aquatic Chronic 1 or Aquatic Chronic 2 according to Regulation 1272/2008/EC³;
- (b) May be regarded as not being an environmentally hazardous substance (aquatic environment) if it does not have to be assigned such a category according to the said Regulation.

2.2.9.1.10.6 Assignment of substances or mixtures classified as environmentally hazardous substances (aquatic environment) according to the provisions in 2.2.9.1.10.3, 2.2.9.1.10.4 or 2.2.9.1.10.5

Substances or mixtures classified as environmentally hazardous substances (aquatic environment) that do not meet the classification criteria of any other class or another substance within Class 9 shall be designated:

UN No. 3077 ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.; or

UN No. 3082 ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

They shall be assigned to packing group III.

2.2.9.1.11 *Genetically modified microorganisms or organisms*

Genetically modified microorganisms (GMMOs) and genetically modified organisms (GMOs) are microorganisms and organisms in which genetic material has been purposely altered through genetic engineering in a way that does not occur naturally. They are assigned to Class 9 (UN No. 3245) if they do not meet the definition of toxic substances or of infectious substances, but are capable of altering animals, plants or microbiological substances in a way not normally the result of natural reproduction.

NOTE 1: GMMOs and GMOs which are infectious are substances of Class 6.2, UN Nos. 2814, 2900 or 3373.

NOTE 2: GMMOs or GMOs are not subject to the provisions of ADR when authorized for use by the competent authorities of the countries of origin, transit and destination¹⁶.

NOTE 3: Pharmaceutical products (such as vaccines) that are packed in a form ready to be administered, including those in clinical trials, and that contain GMMOs or GMOs are not subject to ADR.

NOTE 4: Genetically modified live animals which, in accordance with the current state of scientific knowledge, have no known pathogenic effect on humans, animals and plants and are carried in receptacles that are suitable for safely preventing both the escape of the animals and unauthorized access to them, are not subject to the provisions of ADR. The provisions specified by the International Air Transport Association (IATA) for air transport "Live Animals Regulations, LAR" can be drawn on as guidelines for suitable receptacles for the transport of live animals.

³ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directive 67/548/EEC and 1999/45/EC; and amending Regulation (EC) No 1907/2006, published in the Official Journal of the European Union, L 353, 31 December 2008, p 1-1355.

¹⁶ See Part C of Directive 2001/18/EC of the European Parliament and of the Council on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC (Official Journal of the European Communities, No. L 106, of 17 April 2001, pp 8-14) and Regulation (EC) No. 1829/2003 of the European Parliament and of the Council on genetically modified food and feed (Official Journal of the European Union, No. L 268, of 18 October 2003, pp 1-23), which set out the authorization procedures for the European Union.

NOTE 5: *Live animals shall not be used to carry genetically modified microorganisms classified in Class 9 unless the substance can be carried no other way. Genetically modified live animals shall be carried under terms and conditions of the competent authorities of the countries of origin and destination.*

2.2.9.1.12 *(Deleted)*

2.2.9.1.13 *Elevated temperature substances*

Elevated temperature substances include substances which are carried or handed over for carriage in the liquid state at or above 100 °C and, in the case of those with a flash-point, below their flash-point. They also include solids which are carried or handed over for carriage at or above 240 °C.

NOTE: *Elevated temperature substances may be assigned to Class 9 only if they do not meet the criteria of any other class.*

2.2.9.1.14 *Other substances and articles presenting a danger during carriage but not meeting the definitions of another class*

The following other miscellaneous substances and articles not meeting the definitions of another class are assigned to Class 9:

Solid ammonia compounds having a flash-point below 60 °C;

Low hazard dithionites;

Highly volatile liquids;

Substances emitting noxious fumes;

Substances containing allergens;

Chemical kits and first aid kits;

Electric double layer capacitors (with an energy storage capacity greater than 0.3 Wh);

Vehicles, engines and machinery, internal combustion;

Articles containing miscellaneous dangerous goods.

NOTE: *UN No. 1845 carbon dioxide, solid (dry ice)¹⁷, UN No. 2216 fish meal (fish scrap), stabilized, UN No. 2807 magnetized material, UN No. 3334 aviation regulated liquid, n.o.s. and UN No. 3335 aviation regulated solid, n.o.s. listed in the UN Model Regulations, are not subject to the provisions of ADR.*

2.2.9.1.15 *Assignment of the packing groups*

When indicated in column (4) of Table A of Chapter 3.2, substances and articles of Class 9 are assigned to one of the following packing groups according to their degree of danger:

Packing group II: substances presenting medium danger;

Packing group III: substances presenting low danger.

2.2.9.2 *Substances and articles not accepted for carriage*

The following substances and articles shall not be accepted for carriage:

- Lithium batteries and sodium ion batteries which do not meet the relevant conditions of special provisions 188, 230, 310, 636 or 670 of Chapter 3.3;
- Uncleaned empty containment vessels for apparatus such as transformers, condensers and hydraulic apparatus containing substances assigned to UN Nos. 2315, 3151, 3152 or 3432.

¹⁷ For UN No. 1845 carbon dioxide, solid (dry ice), see 5.5.3.

2.2.9.3

List of entries

Substances which, on inhalation as fine dust, may endanger health	M1	2212 ASBESTOS, AMPHIBOLE (amosite, tremolite, actinolite, anthophyllite, crocidolite) 2590 ASBESTOS, CHRYSOTILE
Substances and articles which, in the event of fire, may form dioxins	M2	2315 POLYCHLORINATED BIPHENYLS, LIQUID 3432 POLYCHLORINATED BIPHENYLS, SOLID 3151 POLYHALOGENATED BIPHENYLS, LIQUID or 3151 HALOGENATED MONOMETHYLDIPHENYLMETHANES, LIQUID or 3151 POLYHALOGENATED TERPHENYLS, LIQUID 3152 POLYHALOGENATED BIPHENYLS, SOLID or 3152 HALOGENATED MONOMETHYLDIPHENYLMETHANES, SOLID or 3152 POLYHALOGENATED TERPHENYLS, SOLID
Substances evolving flammable vapour	M3	2211 POLYMERIC BEADS, EXPANDABLE, evolving flammable vapour 3314 PLASTICS MOULDING COMPOUND in dough, sheet or extruded rope form evolving flammable vapour
Lithium batteries and sodium ion batteries	M4	3090 LITHIUM METAL BATTERIES (including lithium alloy batteries) 3091 LITHIUM METAL BATTERIES CONTAINED IN EQUIPMENT (including lithium alloy batteries) or 3091 LITHIUM METAL BATTERIES PACKED WITH EQUIPMENT (including lithium alloy batteries) 3480 LITHIUM ION BATTERIES (including lithium ion polymer batteries) 3481 LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT (including lithium ion polymer batteries) or 3481 LITHIUM ION BATTERIES PACKED WITH EQUIPMENT (including lithium ion polymer batteries) 3536 LITHIUM BATTERIES INSTALLED IN CARGO TRANSPORT UNIT lithium ion batteries or lithium metal batteries 3551 SODIUM ION BATTERIES with organic electrolyte 3552 SODIUM ION BATTERIES CONTAINED IN EQUIPMENT or SODIUM ION BATTERIES PACKED WITH EQUIPMENT, with organic electrolyte
Live-saving appliances	M5	2990 LIFE-SAVING APPLIANCES, SELF-INFLATING 3072 LIFE-SAVING APPLIANCES NOT SELF-INFLATING containing dangerous goods as equipment 3268 SAFETY DEVICES, electrically initiated 3559 FIRE SUPPRESSANT DISPERSING DEVICES
Environmentally hazardous substances	M6	3082 ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.
	M7	3077 ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.
Elevated temperature substances	M8	3245 GENETICALLY MODIFIED MICROORGANISMS or 3245 GENETICALLY MODIFIED ORGANISMS
	M9	3257 ELEVATED TEMPERATURE LIQUID, N.O.S., at or above 100 °C and below its flash-point (including molten metal, molten salts, etc.)
	M10	3258 ELEVATED TEMPERATURE SOLID, N.O.S., at or above 240 °C

(cont'd on next page)

2.2.9.3

List of entries (cont'd)

Other substances and articles presenting a danger during carriage, but not meeting the definitions of another class

M11

Only substances and articles listed in Table A of Chapter 3.2 are subject to the provisions for Class 9 under this classification code, as follows:

1841 ACETALDEHYDE AMMONIA
1931 ZINC DITHIONITE (ZINC HYDROSULPHITE)
1941 DIBROMODIFLUOROMETHANE
1990 BENZALDEHYDE
2071 AMMONIUM NITRATE BASED FERTILIZER
2969 CASTOR BEANS, or
2969 CASTOR MEAL, or
2969 CASTOR POMACE, or
2969 CASTOR FLAKE
3166 VEHICLE, FLAMMABLE GAS POWERED or
3166 VEHICLE, FLAMMABLE LIQUID POWERED or
3166 VEHICLE, FUEL CELL, FLAMMABLE GAS POWERED or
3166 VEHICLE, FUEL CELL, FLAMMABLE LIQUID POWERED
3171 BATTERY POWERED VEHICLE or
3171 BATTERY POWERED EQUIPMENT
3316 CHEMICAL KIT, or
3316 FIRST AID KIT
3359 FUMIGATED CARGO TRANSPORT UNIT
3363 DANGEROUS GOODS IN ARTICLES or
3363 DANGEROUS GOODS IN MACHINERY or
3363 DANGEROUS GOODS IN APPARATUS
3499 CAPACITOR, ELECTRIC DOUBLE LAYER (with an energy storage capacity greater than 0.3Wh)
3508 CAPACITOR, ASYMMETRIC (with an energy storage capacity greater than 0.3Wh)
3509 PACKAGINGS, DISCARDED, EMPTY, UNCLEANED
3530 ENGINE, INTERNAL COMBUSTION or
3530 MACHINERY, INTERNAL COMBUSTION
3556 VEHICLE, LITHIUM ION BATTERY POWERED
3557 VEHICLE, LITHIUM METAL BATTERY POWERED
3558 VEHICLE, SODIUM ION BATTERY POWERED
3548 ARTICLES CONTAINING MISCELLANEOUS DANGEROUS GOODS
N.O.S.

CHAPTER 2.3

TEST METHODS

2.3.0 General

Unless otherwise provided for in Chapter 2.2 or in this Chapter, the test methods to be used for the classification of dangerous goods are those described in the *Manual of Tests and Criteria*.

2.3.1 Exudation test for blasting explosives of Type A

2.3.1.1 Blasting explosives of type A (UN No. 0081) shall, if they contain more than 40 % liquid nitric ester, in addition to the testing specified in the *Manual of Tests and Criteria*, satisfy the following exudation test.

2.3.1.2 The apparatus for testing blasting explosive for exudation (figs. 1 to 3) consists of a hollow bronze cylinder. This cylinder, which is closed at one end by a plate of the same metal, has an internal diameter of 15.7 mm and a depth of 40 mm. It is pierced by 20 holes 0.5 mm in diameter (four sets of five holes) on the circumference. A bronze piston, cylindrically fashioned over a length of 48 mm and having a total length of 52 mm, slides into the vertically placed cylinder. The piston, whose diameter is 15.6 mm, is loaded with a mass of 2 220 g so that a pressure of 120 kPa (1.20 bar) is exerted on the base of the cylinder.

2.3.1.3 A small plug of blasting explosive weighing 5 to 8 g, 30 mm long and 15 mm in diameter, is wrapped in very fine gauze and placed in the cylinder; the piston and its loading mass are then placed on it so that the blasting explosive is subjected to a pressure of 120 kPa (1.20 bar). The time taken for the appearance of the first signs of oily droplets (nitroglycerine) at the outer orifices of the cylinder holes is noted.

2.3.1.4 The blasting explosive is considered satisfactory if the time elapsing before the appearance of the liquid exudations is more than five minutes, the test having been carried out at a temperature of 15 °C to 25 °C.

Test of blasting explosive for exudation

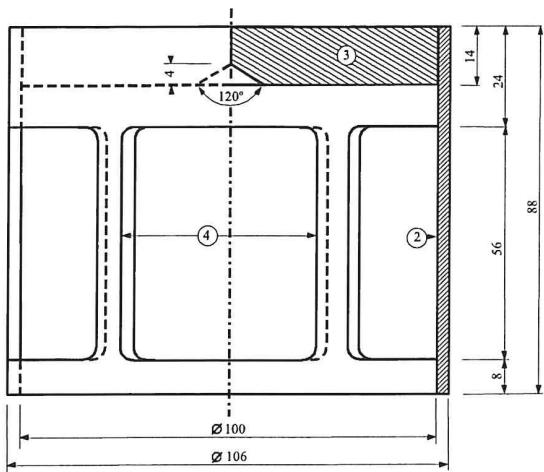


Fig.1: Bell-form charge, mass 2220 g, capable of being suspended from a bronze piston

Fig.2: Cylindrical bronze piston, dimensions in mm

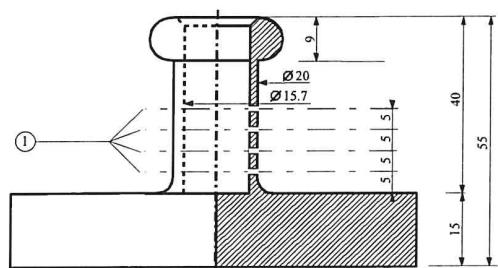
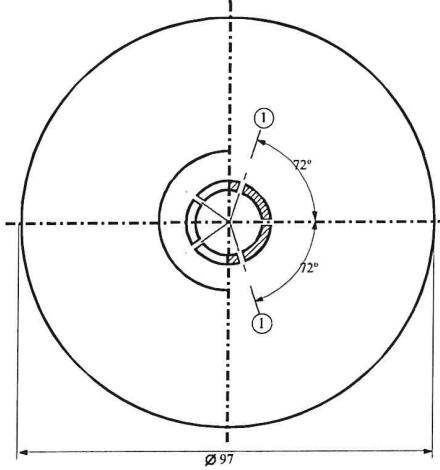



Fig.3: Hollow bronze cylinder, closed at one end; Plan and cut, dimensions in mm

Figs. 1 to 3

- (1) 4 series of 5 holes at $\varnothing 0.5$
- (2) copper
- (3) lead plate with centre cone at the inferior face
- (4) 4 openings, approximately 46×56 , set at even intervals on the periphery

2.3.2 Tests relating to nitrated cellulose mixtures of Class 1 and Class 4.1**2.3.2.1**

In order to determine the criteria of the nitrocellulose, the Bergmann-Junk test or the methyl violet paper test in the *Manual of Tests and Criteria* Appendix 10 shall be performed (see Chapter 3.3, special provisions 393 and 394). If there is doubt that the ignition temperature of the nitrocellulose is considerably higher than 132 °C in the case of the Bergmann-Junk test or higher than 134.5 °C in the case of the methyl violet paper test, the ignition temperature test described in 2.3.2.5 should be carried out before these tests are performed. If the ignition temperature of nitrocellulose mixtures is higher than 180 °C or the ignition temperature of plasticized nitrocellulose is higher than 170 °C, the Bergmann-Junk test or the methyl violet paper test can be carried out safely.

2.3.2.2

Before undergoing the tests in 2.3.2.5, the samples shall be dried for not less than 15 hours at the ambient temperature in a vacuum desiccator containing fused and granulated calcium chloride, the sample substance being spread in a thin layer; for this purpose, substances which are neither in powder form nor fibrous shall be ground, or grated, or cut into small pieces. The pressure in the desiccator shall be brought below 6.5 kPa (0.065 bar).

2.3.2.3

Before being dried as prescribed in 2.3.2.2 above, plasticized nitrocellulose shall undergo preliminary drying in a well-ventilated oven, with its temperature set at 70 °C, until the loss of mass per quarter-hour is less than 0.3 % of the original mass.

2.3.2.4

Weakly nitrated nitrocellulose shall first undergo preliminary drying as prescribed in 2.3.2.3 above; drying shall then be completed by keeping the nitrocellulose for at least 15 hours over concentrated sulphuric acid in a desiccator.

2.3.2.5***Ignition temperature (see 2.3.2.1)***

(a) The ignition temperature is determined by heating 0.2 g of substance enclosed in a glass test tube immersed in a Wood's alloy bath. The test tube is placed in the bath when the latter has reached 100 °C. The temperature of the bath is then progressively increased by 5 °C per minute;

(b) The test tubes must have the following dimensions:

length	125 mm
internal diameter	15 mm
thickness of wall	0.5 mm

and shall be immersed to a depth of 20 mm;

(c) The test shall be repeated three times, the temperature at which ignition of the substance occurs, i.e., slow or rapid combustion, deflagration or detonation, being noted each time;

(d) The lowest temperature recorded in the three tests is the ignition temperature.

2.3.3**Tests relating to flammable liquids of Classes 3, 6.1 and 8****2.3.3.1*****Determination of flash-point*****2.3.3.1.1**

The following methods for determining the flash-point of flammable liquids may be used:

International standards:

ISO 1516 (Determination of flash/no flash – Closed cup equilibrium method)

ISO 1523 (Determination of flash point – Closed cup equilibrium method)

ISO 2719 (Determination of flash point – Pensky-Martens closed cup method)

ISO 13736 (Determination of flash point – Abel closed-cup method)

ISO 3679 (Determination of flash point – Rapid equilibrium closed cup method)

ISO 3680 (Determination of flash/no flash – Rapid equilibrium closed cup method)

National standards:

American Society for Testing Materials International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, Pennsylvania, USA 19428-2959:

ASTM D3828-07a, Standard Test Methods for Flash Point by Small Scale Closed-Cup Tester
ASTM D56-05, Standard Test Method for Flash Point by Tag Closed-Cup Tester
ASTM D3278-96(2004)e1, Standard Test Methods for Flash Point of Liquids by Small Scale Closed-Cup Apparatus
ASTM D93-08, Standard Test Methods for Flash Point by Pensky-Martens Closed-Cup Tester

Association française de normalisation, AFNOR, 11, rue de Pressensé, F-93571 La Plaine Saint-Denis Cedex:

French standard NF M 07 - 019

French standards NF M 07 - 011 / NF T 30 - 050 / NF T 66 - 009

French standard NF M 07 - 036

Deutsches Institut für Normung, Burggrafenstr. 6, D-10787 Berlin:

Standard DIN 51755 (flash-points below 65 °C)

State Committee of the Council of Ministers for Standardization, RUS-113813, GSP, Moscow, M-49 Leninsky Prospect, 9:

GOST 12.1.044-84

2.3.3.1.2 To determine the flash-point of paints, gums and similar viscous products containing solvents, only apparatus and test methods suitable for determining the flash-point for viscous liquids shall be used, in accordance with the following standards:

- (a) International Standard ISO 3679: 1983;
- (b) International Standard ISO 3680: 1983;
- (c) International Standard ISO 1523: 1983;
- (d) International standards EN ISO 13736 and EN ISO 2719, Method B.

2.3.3.1.3 The standards listed in 2.3.3.1.1 shall only be used for flash-point ranges which are specified therein. The possibility of chemical reactions between the substance and the sample holder shall be considered when selecting the standard to be used. The apparatus shall, as far as is consistent with safety, be placed in a draught-free position. For safety, a method utilizing a small sample size, around 2 ml, shall be used for organic peroxides and self-reactive substances (also known as "energetic" substances), or for toxic substances.

2.3.3.1.4 When the flash-point, determined by a non-equilibrium method is found to be 23 ± 2 °C or 60 ± 2 °C, it shall be confirmed for each temperature range by an equilibrium method.

2.3.3.1.5 In the event of a dispute as to the classification of a flammable liquid, the classification proposed by the consignor shall be accepted if a check-test of the flash-point, yields a result not differing by more than 2 °C from the limits (23 °C and 60 °C respectively) stated in 2.2.3.1. If the difference is more than 2 °C, a second check-test shall be carried out, and the lowest figure of the flash-points obtained in either check-test shall be adopted.